Spaces:
Sleeping
Sleeping
File size: 9,875 Bytes
b6f3de6 24e479b 2c8b701 168ecfe b631e19 0b633df 9a31c8f fdbaaaf 96ebd33 b6f3de6 4b1a865 20ff1e3 24e479b 9a31c8f 2c8b701 168ecfe 2c8b701 20ff1e3 0b633df 20ff1e3 2c8b701 20ff1e3 56f5f3f 20ff1e3 24e479b 9a31c8f 24e479b 20ff1e3 0b633df 20ff1e3 0b633df 20ff1e3 24e479b 0b633df 24e479b 9a31c8f 24e479b 20ff1e3 22d49db 20ff1e3 95d8fc2 96ebd33 0b633df 96ebd33 acfc3b8 0b633df acfc3b8 9a31c8f bf19733 9a31c8f 24e479b bf19733 24e479b 4b1a865 24e479b 9a31c8f 24e479b 9a31c8f 0194da3 9a31c8f 0194da3 9a31c8f 22d49db 9a31c8f 2fc0926 96ee798 9a31c8f f6f7e66 bf19733 24e479b bf19733 56f5f3f bf19733 56f5f3f 24e479b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import streamlit as st
import random
import time
import hmac
import os
import json
import requests
from llm_reasoner import LLMReasoner
from prompts import templates
from typing import Any
from string import Template
st.header(" Scientific Claim Verification ")
st.caption("Team UMBC-SBU-UT")
def safe_parse_json(model_answer):
""".."""
try:
return json.loads(model_answer)
except json.JSONDecodeError as e:
logger.error("Failed to parse JSON: %s", e)
return None
def check_password():
"""Returns `True` if the user had a correct password."""
def login_form():
"""Form with widgets to collect user information"""
with st.form("Credentials"):
st.text_input("Username", key="username")
st.text_input("Password", type="password", key="password")
st.form_submit_button("Log in", on_click=password_entered)
def password_entered():
"""Checks whether a password entered by the user is correct."""
stored_password = os.getenv(st.session_state["username"])
if stored_password == st.session_state["password"]:
st.session_state["password_correct"] = True
del st.session_state["password"] # Remove credentials from session
del st.session_state["username"]
return
# If authentication fails
st.session_state["password_correct"] = False
# Return True if the username + password is validated.
if st.session_state.get("password_correct", False):
return True
# Show inputs for username + password.
login_form()
if "password_correct" in st.session_state:
st.error("π User not known or password incorrect")
return False
def select_models():
"""Returns only when a valid option is selected from both dropdowns."""
#placeholders
retriever_options = ["Choose one...", "BM25 Retriever", "Off-the-shelf Retriever", "Finetuned Retriever", "No Retriever"]
reasoner_options = ["Choose one...", "Claude Sonnet", "GPT-4o", "o3-mini"]
#selectboxes
retriever = st.selectbox(
"Select the Retriever Model",
retriever_options,
key="retriever"
)
reasoner = st.selectbox(
"Select the Reasoner Model",
reasoner_options,
key="reasoner"
)
#next button
if st.button("Next"):
# Check that both selections are not the placeholder.
if retriever == "Choose one..." or reasoner == "Choose one...":
st.info("Please select both a retriever and a reasoner.")
return None, None
else:
# Store the valid selections in session state
st.session_state["selected_models"] = (retriever, reasoner)
return retriever, reasoner
else:
st.info("Click 'Next' once you have made your selections.")
return None, None
if not check_password():
st.stop()
if "selected_models" not in st.session_state:
selected_retriever, selected_reasoner = select_models()
# If valid selections are returned, store them and reset the change flag.
if selected_retriever is not None and selected_reasoner is not None:
st.session_state.selected_models = (selected_retriever, selected_reasoner)
st.rerun()
else:
st.stop() # Halt further execution until valid selections are made.
else:
selected_retriever, selected_reasoner = st.session_state.selected_models
#START OF AGENTIC DEMO
column1, column2 = st.columns(2)
column1.caption(f"Retriever Selected: {selected_retriever}")
column2.caption(f"Reasoner Selected: {selected_reasoner}")
if st.button("Change Selection", key="change_selection_btn"):
st.session_state.pop("selected_models", None)
st.session_state.pop("retriever", None)
st.session_state.pop("reasoner", None)
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! π"}]
st.rerun()
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! π"}]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def retriever(query: str, selected_retriever: str):
"""Simulate a 'retriever' step, searching for relevant information."""
with st.chat_message("assistant"):
placeholder = st.empty()
text=""
if selected_retriever == "BM25 Retriever":
message = "Using the BM25 retriever to search for documents related to your query..."
retriever_endpoint = "bm25"
elif selected_retriever == "Off-the-shelf Retriever":
message = "Using the off-the-shelf retriever to fetch detailed documents relevant to your query..."
retriever_endpoint = "ots"
elif selected_retriever == "Finetuned Retriever":
message = "Using the finetuned retriever to fetch detailed documents relevant to your query..."
retriever_endpoint = "ft"
else:
message = "No retriever selected. Skipping document retrieval."
return ""
headers = {
'Content-Type': 'application/json',
}
json_data = {
'claim': query,
}
url = "http://130.245.163.20"
port = "80"
response = requests.post(f'{url}:{port}/{retriever_endpoint}', headers=headers, json=json_data)
documents = response.json()["Documents"]
k = 3
topk_documents = documents[:k]
corpus = '\n\n'.join(topk_documents)
for chunk in message.split():
text += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
placeholder.markdown(text + "β")
placeholder.markdown(text)
# You could return retrieved info here.
return corpus
def reasoner(query: str, documents: list[str], llm_client: Any):
"""Simulate a 'reasoner' step, thinking about how to answer."""
with st.chat_message("assistant"):
placeholder = st.empty()
text=""
if selected_reasoner == "Claude Sonnet":
message = "Using Claude Sonnet to reason and verify the claim..."
elif selected_reasoner == "GPT-4o":
message = "Using GPT-4o to analyze and verify the claim in detail..."
elif selected_reasoner == "o3-mini":
message = "Using o3-mini to quickly analyze the claim..."
if not documents or len(documents) == 0:
prompt_template = Template(templates["no_evidence"])
prompt = prompt_template.substitute(claim=query)
print(prompt)
# prompt = templates["no_evidence"].format(claim=query)
else:
# TODO: fix prompt call to include retrieved documents
prompt_template = Template(templates["with_evidence"])
prompt = prompt_template.substitute(claim=query, corpus=documents)
# prompt = templates["no_evidence"].format(claim=query, corpus=documents)
llm_response = llm_client.run_inference(prompt)
answer_dict = safe_parse_json(llm_response)
decision = answer_dict.get("decision", "")
reasoning = answer_dict.get("reasoning", "")
for chunk in message.split():
text += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
placeholder.markdown(text + "β")
placeholder.markdown(text)
# You could return reasoning info here.
return reasoning, decision
# Accept user input
if prompt := st.chat_input("Type here"):
# Add user message to chat history
prompt = prompt + " \n"+ " \n"+ f"Retriever: {selected_retriever}, Reasoner: {selected_reasoner}"
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
options = {}
options["max_tokens"] = 500
options["temperature"] = 0.0
if selected_reasoner == "Claude Sonnet":
api_key = os.getenv("claude_key")
options["model_family"] = "Anthropic"
options["model_name"] = "claude-3-5-sonnet-20240620"
elif selected_reasoner == "GPT-4o":
api_key = os.getenv("openai_key")
options["model_family"] = "OpenAI"
options["model_name"] = "gpt-4o-2024-11-20"
elif selected_reasoner == "o3-mini":
api_key = os.getenv("openai_key")
options["model_family"] = "OpenAI"
options["model_name"] = "o3-mini-2025-01-31"
options["API_KEY"] = api_key
llm_client = LLMReasoner(options)
retrieved_documents = retriever(prompt, selected_retriever)
reasoning, decision = reasoner(prompt, retrieved_documents, llm_client)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
if decision.lower() == 'support':
assistant_response = f'The claim is CORRECT because {reasoning}'
elif decision.lower() == 'contradict':
assistant_response = f'The claim is INCORRECT because {reasoning}'
# Simulate stream of response with milliseconds delay
for chunk in assistant_response.split():
full_response += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
message_placeholder.markdown(full_response + "β")
message_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
|