Spaces:
Running
Running
File size: 21,662 Bytes
b6f3de6 24e479b 2c8b701 168ecfe b631e19 0b633df 9a31c8f 8513ee1 fdbaaaf 96ebd33 8513ee1 d04d9db b6f3de6 9a31c8f f8c2a86 9a31c8f e631d2f fccec79 d4e577f f8c2a86 d4e577f 9a31c8f 2c8b701 168ecfe 2c8b701 8513ee1 2c8b701 20ff1e3 0b633df d04d9db 8513ee1 20ff1e3 8513ee1 20ff1e3 eb9293b 20ff1e3 8513ee1 20ff1e3 8513ee1 20ff1e3 8513ee1 20ff1e3 9a31c8f 24e479b ccae886 20ff1e3 0b633df 20ff1e3 cc075da dbc6fe0 0b633df dbc6fe0 0b633df dbc6fe0 0b633df dbc6fe0 0b633df dbc6fe0 0b633df dbc6fe0 20ff1e3 d3f8a47 69d2736 dbc6fe0 48f8386 d3f8a47 fd8d1cb d3f8a47 5dbe676 d3f8a47 35b2358 0d66203 24e479b 0b633df 24e479b 8513ee1 24e479b ccae886 8513ee1 1f97642 8513ee1 1f97642 8513ee1 1f97642 8513ee1 20ff1e3 d04d9db 1f97642 d04d9db 1f97642 d04d9db 12bd908 d04d9db 9a31c8f d04d9db 9a31c8f d04d9db 24e479b bf19733 24e479b eb9293b 24e479b eb9293b 8513ee1 eb9293b 8513ee1 eb9293b 8513ee1 eb9293b 8513ee1 eb9293b 8513ee1 eb9293b 9a31c8f 0194da3 9a31c8f 0194da3 9a31c8f 22d49db 9a31c8f d04d9db 2fc0926 96ee798 9a31c8f 5f18a18 a0baf23 aa32cec a0baf23 8513ee1 a0baf23 8513ee1 a0baf23 8513ee1 a0baf23 eb9293b 35f8dd7 5f18a18 eb9293b 8513ee1 5f18a18 eb9293b 8513ee1 eb9293b d04d9db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import streamlit as st
import random
import time
import hmac
import os
import json
import requests
from llm_reasoner import LLMReasoner
from prompts import templates, get_examples
from typing import Any
from string import Template
from qa_dreamer import get_questions
from multi_agent_debate import MultiAgentDebate
def safe_parse_json(model_answer):
""".."""
try:
parsed_answer = json.loads(model_answer)
return parsed_answer
except json.JSONDecodeError as e:
print("Failed to parse JSON: %s", e)
print(f"Raw model answer is: {model_answer}")
model_answer = model_answer.replace("```json", "")
model_answer = model_answer.replace("```", "")
try:
parsed_answer = json.loads(model_answer)
print(f"Hit parsing error but cleaned json as markdown code snippet and it can be parsed now")
return parsed_answer
except json.JSONDecodeError as e:
print("Failed to parse JSON: %s", e)
print(f"Tried to parse cleaned model answer which was: {model_answer}")
return None
def check_password():
"""Returns `True` if the user had a correct password."""
def login_form():
"""Form with widgets to collect user information"""
with st.form("Credentials"):
st.text_input("Username", key="username")
st.text_input("Password", type="password", key="password")
st.form_submit_button("Log in", on_click=password_entered)
def password_entered():
"""Checks whether a password entered by the user is correct."""
stored_password = os.getenv(st.session_state["username"])
if stored_password == st.session_state["password"]:
st.session_state["password_correct"] = True
del st.session_state["password"] # Remove credentials from session
del st.session_state["username"]
return
# If authentication fails
st.session_state["password_correct"] = False
# Return True if the username + password is validated.
if st.session_state.get("password_correct", False):
return True
# Show inputs for username + password.
login_form()
if "password_correct" in st.session_state:
st.error("π User not known or password incorrect")
return False
def select_models():
"""Returns only when a valid option is selected from both dropdowns."""
retriever_options = ["Choose one...", "BM25 Retriever", "Off-the-shelf Retriever", "Finetuned Retriever", "No Retriever"]
reasoner_options = ["Choose one...", "Claude Sonnet", "GPT-4o", "o3-mini", "Multi Agent Debate"]
dreamer_options = ["None", "CoRE", "CoRE-Contrastive", "QA-Decomposition"]
#selectboxes
retriever = st.selectbox(
"Select the Retriever Model",
retriever_options,
key="retriever"
)
dreamer = st.selectbox(
"Select the DREAMER",
dreamer_options,
key="dreamer"
)
reasoner = st.selectbox(
"Select the Reasoner Model",
reasoner_options,
key="reasoner"
)
# next button
if st.button("Next"):
# Check that both selections are not the placeholder.
if retriever == "Choose one..." or reasoner == "Choose one...":
st.info("Please select both a retriever and a reasoner.")
return None, None, None
else:
# Store the valid selections in session state
st.session_state["selected_models"] = (retriever, dreamer, reasoner)
return retriever, dreamer, reasoner
else:
st.info("Click 'Next' once you have made your selections.")
return None, None, None
def retriever(query: str, selected_retriever: str):
"""Simulate a 'retriever' step, searching for relevant information."""
with st.chat_message("assistant"):
placeholder = st.empty()
text = ""
if selected_retriever == "BM25 Retriever":
message = "Using the BM25 retriever to search for documents related to your query..."
retriever_endpoint = "bm25"
elif selected_retriever == "Off-the-shelf Retriever":
message = "Using the off-the-shelf retriever to fetch detailed documents relevant to your query..."
retriever_endpoint = "ots"
elif selected_retriever == "Finetuned Retriever":
message = "Using the finetuned retriever to fetch detailed documents relevant to your query..."
retriever_endpoint = "ft"
else:
message = "No retriever selected. Skipping document retrieval."
retriever_endpoint = "None"
for chunk in message.split():
text += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
placeholder.markdown(text + "β")
placeholder.markdown(text)
if retriever_endpoint == "None":
return ""
headers = {
'Content-Type': 'application/json',
}
json_data = {
'claim': query,
}
url = "http://18.227.0.215"
port = "8000"
response = requests.post(f'{url}:{port}/{retriever_endpoint}', headers=headers, json=json_data)
documents = response.json()["Documents"]
k = 3
topk_documents = documents[:k]
corpus = '\n\n'.join(topk_documents)
print(f"Topk documents: {topk_documents}")
for idx, document in enumerate(topk_documents):
try:
a_idx = document.lower().index("abstract:")
title = document[:a_idx].replace('\n', ' ')
doc_details = document[a_idx:]
except Exception as e:
print(f"Document parsing error for title and other contents-\n{document}, \n\nError: {e}")
title = "Document title"
doc_details = document
with st.expander(f'Rank {idx+1} - {title.replace("Title:", "")}'):
st.write(doc_details)
# retrieved_document_titles = ""
# for document in topk_documents:
# try:
# idx = document.lower().index("abstract:")
# title = document[:idx].replace('\n', ' ')
# retrieved_document_titles = retrieved_document_titles + title + ' ||| '
# except:
# retrieved_document_titles = retrieved_document_titles + document + ' ||| '
# display_retrieved_documents = f"Retrieved Documents - ||| {retrieved_document_titles}"
# with st.chat_message("assistant"):
# placeholder = st.empty()
# text = ""
# print(display_retrieved_documents)
# for chunk in display_retrieved_documents.split():
# if chunk == "|||":
# text += " \n" + " \n"
# else:
# text += chunk + " "
# time.sleep(0.05)
# # Add a blinking cursor to simulate typing
# placeholder.markdown(text + "β")
# placeholder.markdown(text)
# You could return retrieved info here.
return corpus
def display_to_chat(placeholder, message):
"""Simulate a stream of messages in the chat."""
text = ""
import re
for chunk in re.split(r'(\s+)', message):
text += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
placeholder.markdown(text + "β")
placeholder.markdown(text)
def reasoner(query: str, documents: list[str], selected_dreamer: str, selected_reasoner: str, llm_client: Any):
"""Simulate a 'reasoner' step, thinking about how to answer."""
with st.chat_message("assistant"):
placeholder = st.empty()
text = ""
message = ""
# find the appropriate template
if selected_dreamer == 'None':
if not documents or len(documents) == 0:
prompt_template = Template(templates["no_evidence"])
prompt = prompt_template.substitute(claim=query)
print(prompt)
else:
prompt_template = Template(templates["with_evidence"])
prompt = prompt_template.substitute(claim=query, corpus_text=documents)
elif (selected_dreamer == 'CoRE' or selected_dreamer == 'CoRE-Contrastive') and selected_reasoner != "Multi Agent Debate":
conditions = [""]
prompt_template = Template(templates["generate_condition"])
prompt = prompt_template.substitute(claim=query)
prompt = get_examples() + prompt + " answer: "
print(prompt)
message += f"Using {selected_dreamer} to decompose and elaborate the claim..."
display_to_chat(placeholder, message)
placeholder = st.empty()
llm_response = llm_client.run_inference(prompt)
print(llm_response)
conditions = llm_response.split('\n\n')
print(conditions)
condition = conditions[0] if selected_dreamer == 'CoRE' else conditions[1]
message = "To reason about the claim, CoRE is considering the potential condition: " + condition + "\n\n\n\n"
if not documents or len(documents) == 0:
prompt_template = Template(templates["with_condition"])
prompt = prompt_template.substitute(claim=query, condition=condition)
else:
prompt_template = Template(templates["with_evidence_condition"])
prompt = prompt_template.substitute(claim=query, corpus_text=documents, condition=condition)
elif selected_dreamer == 'QA-Decomposition':
message += "Decomposing into atomic questions...\n"
display_to_chat(placeholder, message)
placeholder = st.empty()
questions = get_questions(query)
message = questions + "\n\n\n\n"
message += "Now using the question decomposition to reason and verify the claim...\n\n"
if not documents or len(documents) == 0:
prompt_template = Template(templates["no_evidence_questions"])
prompt = prompt_template.substitute(claim=query, questions=questions)
print(prompt)
else:
prompt_template = Template(templates["with_evidence_questions"])
prompt = prompt_template.substitute(claim=query, corpus_text=documents, questions=questions)
else:
if not documents or len(documents) == 0:
prompt_template = Template(templates["no_evidence"])
prompt = prompt_template.substitute(claim=query)
else:
prompt_template = Template(templates["with_evidence"])
prompt = prompt_template.substitute(claim=query, corpus_text=documents)
if selected_reasoner == "Multi Agent Debate":
initial_agent_beliefs=None
if selected_dreamer == 'CoRE' or selected_dreamer == 'CoRE-Contrastive':
conditions = [""]
prompt_template = Template(templates["generate_condition"])
prompt = prompt_template.substitute(claim=query)
prompt = get_examples() + prompt + " answer: "
llm_response = llm_client.run_inference(prompt)
initial_agent_beliefs = llm_response.split('\n\n')
print(initial_agent_beliefs)
multi_agent_debate = MultiAgentDebate(client=llm_client.client)
initial_evidence = "" if (not documents or len(documents)==0) else documents[0]
def mad_printer(msg, explanation):
print(msg)
ph = st.empty()
display_to_chat(ph, msg)
if explanation is not None or len(explanation) > 0:
with st.expander("Agent's Argument (see more)"):
st.write(str(explanation))
decision = multi_agent_debate(claim=query,
doc=initial_evidence,
initial_agent_responses=initial_agent_beliefs,
writer=mad_printer)
reasoning = "of the debate and discussion."
else:
if selected_reasoner == "Claude Sonnet":
message += "Using Claude Sonnet to reason and verify the claim..."
elif selected_reasoner == "GPT-4o":
message += "Using GPT-4o to analyze and verify the claim in detail..."
elif selected_reasoner == "o3-mini":
message += "Using o3-mini to quickly analyze the claim..."
elif selected_reasoner == "Multi Agent Debate":
message += "Multiple Agents will discuss and reason about the claim..."
print(prompt)
llm_response = llm_client.run_inference(prompt)
answer_dict = safe_parse_json(llm_response)
try:
decision = answer_dict.get("decision", "")
reasoning = answer_dict.get("reasoning", "")
except:
print(f"Error with parsing the returned {answer_dict}")
decision, reasoning = "", ""
display_to_chat(placeholder, message)
# You could return reasoning info here.
return reasoning, decision
def main():
st.header(" Scientific Claim Verification ")
st.caption("Team UMBC-SBU-UT")
if not check_password():
st.stop()
if "selected_models" not in st.session_state:
selected_retriever, selected_dreamer, selected_reasoner = select_models()
# If valid selections are returned, store them and reset the change flag.
if selected_retriever is not None and selected_reasoner is not None:
st.session_state.selected_models = (selected_retriever, selected_dreamer, selected_reasoner)
st.rerun()
else:
st.stop() # Halt further execution until valid selections are made.
else:
selected_retriever, selected_dreamer, selected_reasoner = st.session_state.selected_models
# START OF AGENTIC DEMO
column1, column2 = st.columns(2)
column1.caption(f"Retriever Selected: {selected_retriever}")
column1.caption(f"Dreamer Selected: {selected_dreamer}")
column2.caption(f"Reasoner Selected: {selected_reasoner}")
if st.button("Change Selection", key="change_selection_btn"):
st.session_state.pop("selected_models", None)
st.session_state.pop("retriever", None)
st.session_state.pop("dreamer", None)
st.session_state.pop("reasoner", None)
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! π"}]
st.rerun()
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! π"}]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Model configurations on agentic demo page
options = {}
options["max_tokens"] = 500
options["temperature"] = 0.0
if selected_reasoner == "Claude Sonnet":
api_key = os.getenv("claude_key")
options["model_family"] = "Anthropic"
options["model_name"] = "claude-3-5-sonnet-20240620"
elif selected_reasoner == "GPT-4o":
api_key = os.getenv("openai_key")
options["model_family"] = "OpenAI"
options["model_name"] = "gpt-4o-2024-11-20"
elif selected_reasoner == "o3-mini":
api_key = os.getenv("openai_key")
options["model_family"] = "OpenAI"
options["model_name"] = "o3-mini-2025-01-31"
elif selected_reasoner == "Multi Agent Debate":
api_key = os.getenv("openai_key")
options["model_family"] = "OpenAI"
options["model_name"] = "gpt-4o-2024-11-20"
options["API_KEY"] = api_key
llm_client = LLMReasoner(options)
def send_preset_message(text):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": text})
# Set the auto_submit flag to process this message
st.session_state.auto_submit = True
st.session_state.auto_submit_text = text
# Quick input buttons - place these above the chat input
st.sidebar.subheader("Quick Inputs")
# Create buttons in the sidebar
if st.sidebar.button("Example 1 C"):
send_preset_message("The density of cytokine receptor bearing cells has no effect on the distance over which cytokines act.")
if st.sidebar.button("Example 2 C"):
send_preset_message("A total of 1,000 people in the UK are asymptomatic carriers of vCJD infection.")
if st.sidebar.button("Example 3 C"):
send_preset_message("Sepsis related mortality has risen from 2009 to 2014.")
if st.sidebar.button("Example 4 S"):
send_preset_message("IL-6 signaling plays a major role in atherosclerotic cardiovascular disease.")
if st.sidebar.button("Example 5 S"):
send_preset_message("The severity of cardiac involvement in amyloidosis can be described by the degree of transmurality of late gadolinium enhancement in MRI.")
if st.sidebar.button("Example 6 S"):
send_preset_message("There was an estimated 30 million cases of pneumonia in young children worldwide in 2010.")
if st.sidebar.button("New Assessment"):
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! π"}]
st.rerun()
# Handle auto-submission if a button was clicked
if "auto_submit" in st.session_state and st.session_state.auto_submit:
prompt = st.session_state.auto_submit_text
display_message = prompt + " \n" + " \n" + f"Retriever: {selected_retriever}, Dreamer: {selected_dreamer}, Reasoner: {selected_reasoner}"
st.session_state.messages.append({"role": "user", "content": prompt})
st.session_state.messages.append({"role": "summary", "content": display_message})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(display_message)
retrieved_documents = retriever(prompt, selected_retriever)
reasoning, decision = reasoner(prompt, retrieved_documents, selected_dreamer, selected_reasoner, llm_client)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
if decision.lower() == 'support':
assistant_response = f'The claim is CORRECT because {reasoning}'
elif decision.lower() == 'contradict':
assistant_response = f'The claim is INCORRECT because {reasoning}'
else:
assistant_response = 'Sorry, the query failed due to an issue with connecting to the LLM service.'
# Simulate stream of response with milliseconds delay
for chunk in assistant_response.split():
full_response += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
message_placeholder.markdown(full_response + "β")
message_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
# Reset the auto_submit flag
st.session_state.auto_submit = False
# Rerun to update the UI immediately - may not be needed
# st.rerun()
# Accept user input
prompt = st.chat_input("Type your claim here")
if prompt:
# Add user message to chat history
display_message = prompt + " \n"+ " \n"+ f"Retriever: {selected_retriever}, Dreamer: {selected_dreamer}, Reasoner: {selected_reasoner}"
st.session_state.messages.append({"role": "user", "content": prompt})
st.session_state.messages.append({"role": "summary", "content": display_message})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(display_message)
retrieved_documents = retriever(prompt, selected_retriever)
reasoning, decision = reasoner(prompt, retrieved_documents, selected_dreamer, selected_reasoner, llm_client)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
if decision.lower() == 'support':
assistant_response = f'The claim is CORRECT because {reasoning}'
elif decision.lower() == 'contradict':
assistant_response = f'The claim is INCORRECT because {reasoning}'
else:
assistant_response = f'Sorry, the query failed due to an issue with connecting to the LLM service.'
# Simulate stream of response with milliseconds delay
for chunk in assistant_response.split():
full_response += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
message_placeholder.markdown(full_response + "β")
message_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
if __name__ == '__main__':
main()
|