Spaces:
Running
Running
import streamlit as st | |
import random | |
import time | |
import hmac | |
import os | |
import json | |
import requests | |
from llm_reasoner import LLMReasoner | |
from prompts import templates, get_examples | |
from typing import Any | |
from string import Template | |
from qa_dreamer import get_questions | |
from multi_agent_debate import MultiAgentDebate | |
def safe_parse_json(model_answer): | |
"""..""" | |
try: | |
parsed_answer = json.loads(model_answer) | |
return parsed_answer | |
except json.JSONDecodeError as e: | |
print("Failed to parse JSON: %s", e) | |
print(f"Raw model answer is: {model_answer}") | |
model_answer = model_answer.replace("```json", "") | |
model_answer = model_answer.replace("```", "") | |
try: | |
parsed_answer = json.loads(model_answer) | |
print(f"Hit parsing error but cleaned json as markdown code snippet and it can be parsed now") | |
return parsed_answer | |
except json.JSONDecodeError as e: | |
print("Failed to parse JSON: %s", e) | |
print(f"Tried to parse cleaned model answer which was: {model_answer}") | |
return None | |
def check_password(): | |
"""Returns `True` if the user had a correct password.""" | |
def login_form(): | |
"""Form with widgets to collect user information""" | |
with st.form("Credentials"): | |
st.text_input("Username", key="username") | |
st.text_input("Password", type="password", key="password") | |
st.form_submit_button("Log in", on_click=password_entered) | |
def password_entered(): | |
"""Checks whether a password entered by the user is correct.""" | |
stored_password = os.getenv(st.session_state["username"]) | |
if stored_password == st.session_state["password"]: | |
st.session_state["password_correct"] = True | |
del st.session_state["password"] # Remove credentials from session | |
del st.session_state["username"] | |
return | |
# If authentication fails | |
st.session_state["password_correct"] = False | |
# Return True if the username + password is validated. | |
if st.session_state.get("password_correct", False): | |
return True | |
# Show inputs for username + password. | |
login_form() | |
if "password_correct" in st.session_state: | |
st.error("π User not known or password incorrect") | |
return False | |
def select_models(): | |
"""Returns only when a valid option is selected from both dropdowns.""" | |
retriever_options = ["Choose one...", "BM25 Retriever", "Off-the-shelf Retriever", "Finetuned Retriever", "No Retriever"] | |
reasoner_options = ["Choose one...", "Claude Sonnet", "GPT-4o", "o3-mini", "Multi Agent Debate"] | |
dreamer_options = ["None", "CoRE", "CoRE-Contrastive", "QA-Decomposition"] | |
#selectboxes | |
retriever = st.selectbox( | |
"Select the Retriever Model", | |
retriever_options, | |
key="retriever" | |
) | |
dreamer = st.selectbox( | |
"Select the DREAMER", | |
dreamer_options, | |
key="dreamer" | |
) | |
reasoner = st.selectbox( | |
"Select the Reasoner Model", | |
reasoner_options, | |
key="reasoner" | |
) | |
# next button | |
if st.button("Next"): | |
# Check that both selections are not the placeholder. | |
if retriever == "Choose one..." or reasoner == "Choose one...": | |
st.info("Please select both a retriever and a reasoner.") | |
return None, None, None | |
else: | |
# Store the valid selections in session state | |
st.session_state["selected_models"] = (retriever, dreamer, reasoner) | |
return retriever, dreamer, reasoner | |
else: | |
st.info("Click 'Next' once you have made your selections.") | |
return None, None, None | |
def retriever(query: str, selected_retriever: str): | |
"""Simulate a 'retriever' step, searching for relevant information.""" | |
with st.chat_message("assistant"): | |
placeholder = st.empty() | |
text = "" | |
if selected_retriever == "BM25 Retriever": | |
message = "Using the BM25 retriever to search for documents related to your query..." | |
retriever_endpoint = "bm25" | |
elif selected_retriever == "Off-the-shelf Retriever": | |
message = "Using the off-the-shelf retriever to fetch detailed documents relevant to your query..." | |
retriever_endpoint = "ots" | |
elif selected_retriever == "Finetuned Retriever": | |
message = "Using the finetuned retriever to fetch detailed documents relevant to your query..." | |
retriever_endpoint = "ft" | |
else: | |
message = "No retriever selected. Skipping document retrieval." | |
retriever_endpoint = "None" | |
for chunk in message.split(): | |
text += chunk + " " | |
time.sleep(0.05) | |
# Add a blinking cursor to simulate typing | |
placeholder.markdown(text + "β") | |
placeholder.markdown(text) | |
if retriever_endpoint == "None": | |
return "" | |
headers = { | |
'Content-Type': 'application/json', | |
} | |
json_data = { | |
'claim': query, | |
} | |
url = "http://18.227.0.215" | |
port = "8000" | |
response = requests.post(f'{url}:{port}/{retriever_endpoint}', headers=headers, json=json_data) | |
documents = response.json()["Documents"] | |
k = 3 | |
topk_documents = documents[:k] | |
corpus = '\n\n'.join(topk_documents) | |
print(f"Topk documents: {topk_documents}") | |
for idx, document in enumerate(topk_documents): | |
try: | |
a_idx = document.lower().index("abstract:") | |
title = document[:a_idx].replace('\n', ' ') | |
doc_details = document[a_idx:] | |
except Exception as e: | |
print(f"Document parsing error for title and other contents-\n{document}, \n\nError: {e}") | |
title = "Document title" | |
doc_details = document | |
with st.expander(f'Rank {idx+1} - {title.replace("Title:", "")}'): | |
st.write(doc_details) | |
# retrieved_document_titles = "" | |
# for document in topk_documents: | |
# try: | |
# idx = document.lower().index("abstract:") | |
# title = document[:idx].replace('\n', ' ') | |
# retrieved_document_titles = retrieved_document_titles + title + ' ||| ' | |
# except: | |
# retrieved_document_titles = retrieved_document_titles + document + ' ||| ' | |
# display_retrieved_documents = f"Retrieved Documents - ||| {retrieved_document_titles}" | |
# with st.chat_message("assistant"): | |
# placeholder = st.empty() | |
# text = "" | |
# print(display_retrieved_documents) | |
# for chunk in display_retrieved_documents.split(): | |
# if chunk == "|||": | |
# text += " \n" + " \n" | |
# else: | |
# text += chunk + " " | |
# time.sleep(0.05) | |
# # Add a blinking cursor to simulate typing | |
# placeholder.markdown(text + "β") | |
# placeholder.markdown(text) | |
# You could return retrieved info here. | |
return corpus | |
def display_to_chat(placeholder, message): | |
"""Simulate a stream of messages in the chat.""" | |
text = "" | |
import re | |
for chunk in re.split(r'(\s+)', message): | |
text += chunk + " " | |
time.sleep(0.05) | |
# Add a blinking cursor to simulate typing | |
placeholder.markdown(text + "β") | |
placeholder.markdown(text) | |
def reasoner(query: str, documents: list[str], selected_dreamer: str, selected_reasoner: str, llm_client: Any): | |
"""Simulate a 'reasoner' step, thinking about how to answer.""" | |
with st.chat_message("assistant"): | |
placeholder = st.empty() | |
text = "" | |
message = "" | |
# find the appropriate template | |
if selected_dreamer == 'None': | |
if not documents or len(documents) == 0: | |
prompt_template = Template(templates["no_evidence"]) | |
prompt = prompt_template.substitute(claim=query) | |
print(prompt) | |
else: | |
prompt_template = Template(templates["with_evidence"]) | |
prompt = prompt_template.substitute(claim=query, corpus_text=documents) | |
elif (selected_dreamer == 'CoRE' or selected_dreamer == 'CoRE-Contrastive') and selected_reasoner != "Multi Agent Debate": | |
conditions = [""] | |
prompt_template = Template(templates["generate_condition"]) | |
prompt = prompt_template.substitute(claim=query) | |
prompt = get_examples() + prompt + " answer: " | |
print(prompt) | |
message += f"Using {selected_dreamer} to decompose and elaborate the claim..." | |
display_to_chat(placeholder, message) | |
placeholder = st.empty() | |
llm_response = llm_client.run_inference(prompt) | |
print(llm_response) | |
conditions = llm_response.split('\n\n') | |
print(conditions) | |
condition = conditions[0] if selected_dreamer == 'CoRE' else conditions[1] | |
message = "To reason about the claim, CoRE is considering the potential condition: " + condition + "\n\n\n\n" | |
if not documents or len(documents) == 0: | |
prompt_template = Template(templates["with_condition"]) | |
prompt = prompt_template.substitute(claim=query, condition=condition) | |
else: | |
prompt_template = Template(templates["with_evidence_condition"]) | |
prompt = prompt_template.substitute(claim=query, corpus_text=documents, condition=condition) | |
elif selected_dreamer == 'QA-Decomposition': | |
message += "Decomposing into atomic questions...\n" | |
display_to_chat(placeholder, message) | |
placeholder = st.empty() | |
questions = get_questions(query) | |
message = questions + "\n\n\n\n" | |
message += "Now using the question decomposition to reason and verify the claim...\n\n" | |
if not documents or len(documents) == 0: | |
prompt_template = Template(templates["no_evidence_questions"]) | |
prompt = prompt_template.substitute(claim=query, questions=questions) | |
print(prompt) | |
else: | |
prompt_template = Template(templates["with_evidence_questions"]) | |
prompt = prompt_template.substitute(claim=query, corpus_text=documents, questions=questions) | |
else: | |
if not documents or len(documents) == 0: | |
prompt_template = Template(templates["no_evidence"]) | |
prompt = prompt_template.substitute(claim=query) | |
else: | |
prompt_template = Template(templates["with_evidence"]) | |
prompt = prompt_template.substitute(claim=query, corpus_text=documents) | |
if selected_reasoner == "Multi Agent Debate": | |
initial_agent_beliefs=None | |
if selected_dreamer == 'CoRE' or selected_dreamer == 'CoRE-Contrastive': | |
conditions = [""] | |
prompt_template = Template(templates["generate_condition"]) | |
prompt = prompt_template.substitute(claim=query) | |
prompt = get_examples() + prompt + " answer: " | |
llm_response = llm_client.run_inference(prompt) | |
initial_agent_beliefs = llm_response.split('\n\n') | |
print(initial_agent_beliefs) | |
multi_agent_debate = MultiAgentDebate(client=llm_client.client) | |
initial_evidence = "" if (not documents or len(documents)==0) else documents[0] | |
def mad_printer(msg, explanation): | |
print(msg) | |
ph = st.empty() | |
display_to_chat(ph, msg) | |
if explanation is not None or len(explanation) > 0: | |
with st.expander("Agent's Argument (see more)"): | |
st.write(str(explanation)) | |
decision = multi_agent_debate(claim=query, | |
doc=initial_evidence, | |
initial_agent_responses=initial_agent_beliefs, | |
writer=mad_printer) | |
reasoning = "of the debate and discussion." | |
else: | |
if selected_reasoner == "Claude Sonnet": | |
message += "Using Claude Sonnet to reason and verify the claim..." | |
elif selected_reasoner == "GPT-4o": | |
message += "Using GPT-4o to analyze and verify the claim in detail..." | |
elif selected_reasoner == "o3-mini": | |
message += "Using o3-mini to quickly analyze the claim..." | |
elif selected_reasoner == "Multi Agent Debate": | |
message += "Multiple Agents will discuss and reason about the claim..." | |
print(prompt) | |
llm_response = llm_client.run_inference(prompt) | |
answer_dict = safe_parse_json(llm_response) | |
try: | |
decision = answer_dict.get("decision", "") | |
reasoning = answer_dict.get("reasoning", "") | |
except: | |
print(f"Error with parsing the returned {answer_dict}") | |
decision, reasoning = "", "" | |
display_to_chat(placeholder, message) | |
# You could return reasoning info here. | |
return reasoning, decision | |
def main(): | |
st.header(" Scientific Claim Verification ") | |
st.caption("Team UMBC-SBU-UT") | |
if not check_password(): | |
st.stop() | |
if "selected_models" not in st.session_state: | |
selected_retriever, selected_dreamer, selected_reasoner = select_models() | |
# If valid selections are returned, store them and reset the change flag. | |
if selected_retriever is not None and selected_reasoner is not None: | |
st.session_state.selected_models = (selected_retriever, selected_dreamer, selected_reasoner) | |
st.rerun() | |
else: | |
st.stop() # Halt further execution until valid selections are made. | |
else: | |
selected_retriever, selected_dreamer, selected_reasoner = st.session_state.selected_models | |
# START OF AGENTIC DEMO | |
column1, column2 = st.columns(2) | |
column1.caption(f"Retriever Selected: {selected_retriever}") | |
column1.caption(f"Dreamer Selected: {selected_dreamer}") | |
column2.caption(f"Reasoner Selected: {selected_reasoner}") | |
if st.button("Change Selection", key="change_selection_btn"): | |
st.session_state.pop("selected_models", None) | |
st.session_state.pop("retriever", None) | |
st.session_state.pop("dreamer", None) | |
st.session_state.pop("reasoner", None) | |
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! π"}] | |
st.rerun() | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! π"}] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Model configurations on agentic demo page | |
options = {} | |
options["max_tokens"] = 500 | |
options["temperature"] = 0.0 | |
if selected_reasoner == "Claude Sonnet": | |
api_key = os.getenv("claude_key") | |
options["model_family"] = "Anthropic" | |
options["model_name"] = "claude-3-5-sonnet-20240620" | |
elif selected_reasoner == "GPT-4o": | |
api_key = os.getenv("openai_key") | |
options["model_family"] = "OpenAI" | |
options["model_name"] = "gpt-4o-2024-11-20" | |
elif selected_reasoner == "o3-mini": | |
api_key = os.getenv("openai_key") | |
options["model_family"] = "OpenAI" | |
options["model_name"] = "o3-mini-2025-01-31" | |
elif selected_reasoner == "Multi Agent Debate": | |
api_key = os.getenv("openai_key") | |
options["model_family"] = "OpenAI" | |
options["model_name"] = "gpt-4o-2024-11-20" | |
options["API_KEY"] = api_key | |
llm_client = LLMReasoner(options) | |
def send_preset_message(text): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": text}) | |
# Set the auto_submit flag to process this message | |
st.session_state.auto_submit = True | |
st.session_state.auto_submit_text = text | |
# Quick input buttons - place these above the chat input | |
st.sidebar.subheader("Quick Inputs") | |
# Create buttons in the sidebar | |
if st.sidebar.button("Example 1 C"): | |
send_preset_message("The density of cytokine receptor bearing cells has no effect on the distance over which cytokines act.") | |
if st.sidebar.button("Example 2 C"): | |
send_preset_message("A total of 1,000 people in the UK are asymptomatic carriers of vCJD infection.") | |
if st.sidebar.button("Example 3 C"): | |
send_preset_message("Sepsis related mortality has risen from 2009 to 2014.") | |
if st.sidebar.button("Example 4 S"): | |
send_preset_message("IL-6 signaling plays a major role in atherosclerotic cardiovascular disease.") | |
if st.sidebar.button("Example 5 S"): | |
send_preset_message("The severity of cardiac involvement in amyloidosis can be described by the degree of transmurality of late gadolinium enhancement in MRI.") | |
if st.sidebar.button("Example 6 S"): | |
send_preset_message("There was an estimated 30 million cases of pneumonia in young children worldwide in 2010.") | |
if st.sidebar.button("New Assessment"): | |
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! π"}] | |
st.rerun() | |
# Handle auto-submission if a button was clicked | |
if "auto_submit" in st.session_state and st.session_state.auto_submit: | |
prompt = st.session_state.auto_submit_text | |
display_message = prompt + " \n" + " \n" + f"Retriever: {selected_retriever}, Dreamer: {selected_dreamer}, Reasoner: {selected_reasoner}" | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
st.session_state.messages.append({"role": "summary", "content": display_message}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(display_message) | |
retrieved_documents = retriever(prompt, selected_retriever) | |
reasoning, decision = reasoner(prompt, retrieved_documents, selected_dreamer, selected_reasoner, llm_client) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
if decision.lower() == 'support': | |
assistant_response = f'The claim is CORRECT because {reasoning}' | |
elif decision.lower() == 'contradict': | |
assistant_response = f'The claim is INCORRECT because {reasoning}' | |
else: | |
assistant_response = 'Sorry, the query failed due to an issue with connecting to the LLM service.' | |
# Simulate stream of response with milliseconds delay | |
for chunk in assistant_response.split(): | |
full_response += chunk + " " | |
time.sleep(0.05) | |
# Add a blinking cursor to simulate typing | |
message_placeholder.markdown(full_response + "β") | |
message_placeholder.markdown(full_response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) | |
# Reset the auto_submit flag | |
st.session_state.auto_submit = False | |
# Rerun to update the UI immediately - may not be needed | |
# st.rerun() | |
# Accept user input | |
prompt = st.chat_input("Type your claim here") | |
if prompt: | |
# Add user message to chat history | |
display_message = prompt + " \n"+ " \n"+ f"Retriever: {selected_retriever}, Dreamer: {selected_dreamer}, Reasoner: {selected_reasoner}" | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
st.session_state.messages.append({"role": "summary", "content": display_message}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(display_message) | |
retrieved_documents = retriever(prompt, selected_retriever) | |
reasoning, decision = reasoner(prompt, retrieved_documents, selected_dreamer, selected_reasoner, llm_client) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
if decision.lower() == 'support': | |
assistant_response = f'The claim is CORRECT because {reasoning}' | |
elif decision.lower() == 'contradict': | |
assistant_response = f'The claim is INCORRECT because {reasoning}' | |
else: | |
assistant_response = f'Sorry, the query failed due to an issue with connecting to the LLM service.' | |
# Simulate stream of response with milliseconds delay | |
for chunk in assistant_response.split(): | |
full_response += chunk + " " | |
time.sleep(0.05) | |
# Add a blinking cursor to simulate typing | |
message_placeholder.markdown(full_response + "β") | |
message_placeholder.markdown(full_response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) | |
if __name__ == '__main__': | |
main() | |