File size: 69,037 Bytes
4a367ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
Sequential modeling
===================

Sequence alignment
------------------
.. autosummary::
    :toctree: generated/

    dtw
    rqa

Viterbi decoding
----------------
.. autosummary::
    :toctree: generated/

    viterbi
    viterbi_discriminative
    viterbi_binary

Transition matrices
-------------------
.. autosummary::
    :toctree: generated/

    transition_uniform
    transition_loop
    transition_cycle
    transition_local
"""
from __future__ import annotations

import numpy as np
from scipy.spatial.distance import cdist
from numba import jit
from .util import pad_center, fill_off_diagonal, is_positive_int, tiny, expand_to
from .util.exceptions import ParameterError
from .filters import get_window
from typing import Any, Iterable, List, Optional, Tuple, Union, overload
from typing_extensions import Literal
from ._typing import _WindowSpec, _IntLike_co

__all__ = [
    "dtw",
    "dtw_backtracking",
    "rqa",
    "viterbi",
    "viterbi_discriminative",
    "viterbi_binary",
    "transition_uniform",
    "transition_loop",
    "transition_cycle",
    "transition_local",
]


@overload
def dtw(
    X: np.ndarray,
    Y: np.ndarray,
    *,
    metric: str = ...,
    step_sizes_sigma: Optional[np.ndarray] = ...,
    weights_add: Optional[np.ndarray] = ...,
    weights_mul: Optional[np.ndarray] = ...,
    subseq: bool = ...,
    backtrack: Literal[False],
    global_constraints: bool = ...,
    band_rad: float = ...,
    return_steps: Literal[False] = ...,
) -> np.ndarray:
    ...


@overload
def dtw(
    *,
    C: np.ndarray,
    metric: str = ...,
    step_sizes_sigma: Optional[np.ndarray] = ...,
    weights_add: Optional[np.ndarray] = ...,
    weights_mul: Optional[np.ndarray] = ...,
    subseq: bool = ...,
    backtrack: Literal[False],
    global_constraints: bool = ...,
    band_rad: float = ...,
    return_steps: Literal[False] = ...,
) -> np.ndarray:
    ...


@overload
def dtw(
    X: np.ndarray,
    Y: np.ndarray,
    *,
    metric: str = ...,
    step_sizes_sigma: Optional[np.ndarray] = ...,
    weights_add: Optional[np.ndarray] = ...,
    weights_mul: Optional[np.ndarray] = ...,
    subseq: bool = ...,
    backtrack: Literal[False],
    global_constraints: bool = ...,
    band_rad: float = ...,
    return_steps: Literal[True],
) -> Tuple[np.ndarray, np.ndarray]:
    ...


@overload
def dtw(
    *,
    C: np.ndarray,
    metric: str = ...,
    step_sizes_sigma: Optional[np.ndarray] = ...,
    weights_add: Optional[np.ndarray] = ...,
    weights_mul: Optional[np.ndarray] = ...,
    subseq: bool = ...,
    backtrack: Literal[False],
    global_constraints: bool = ...,
    band_rad: float = ...,
    return_steps: Literal[True],
) -> Tuple[np.ndarray, np.ndarray]:
    ...


@overload
def dtw(
    X: np.ndarray,
    Y: np.ndarray,
    *,
    metric: str = ...,
    step_sizes_sigma: Optional[np.ndarray] = ...,
    weights_add: Optional[np.ndarray] = ...,
    weights_mul: Optional[np.ndarray] = ...,
    subseq: bool = ...,
    backtrack: Literal[True] = ...,
    global_constraints: bool = ...,
    band_rad: float = ...,
    return_steps: Literal[False] = ...,
) -> Tuple[np.ndarray, np.ndarray]:
    ...


@overload
def dtw(
    *,
    C: np.ndarray,
    metric: str = ...,
    step_sizes_sigma: Optional[np.ndarray] = ...,
    weights_add: Optional[np.ndarray] = ...,
    weights_mul: Optional[np.ndarray] = ...,
    subseq: bool = ...,
    backtrack: Literal[True] = ...,
    global_constraints: bool = ...,
    band_rad: float = ...,
    return_steps: Literal[False] = ...,
) -> Tuple[np.ndarray, np.ndarray]:
    ...


@overload
def dtw(
    X: np.ndarray,
    Y: np.ndarray,
    *,
    metric: str = ...,
    step_sizes_sigma: Optional[np.ndarray] = ...,
    weights_add: Optional[np.ndarray] = ...,
    weights_mul: Optional[np.ndarray] = ...,
    subseq: bool = ...,
    backtrack: Literal[True] = ...,
    global_constraints: bool = ...,
    band_rad: float = ...,
    return_steps: Literal[True],
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    ...


@overload
def dtw(
    *,
    C: np.ndarray,
    metric: str = ...,
    step_sizes_sigma: Optional[np.ndarray] = ...,
    weights_add: Optional[np.ndarray] = ...,
    weights_mul: Optional[np.ndarray] = ...,
    subseq: bool = ...,
    backtrack: Literal[True] = ...,
    global_constraints: bool = ...,
    band_rad: float = ...,
    return_steps: Literal[True],
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    ...


def dtw(
    X: Optional[np.ndarray] = None,
    Y: Optional[np.ndarray] = None,
    *,
    C: Optional[np.ndarray] = None,
    metric: str = "euclidean",
    step_sizes_sigma: Optional[np.ndarray] = None,
    weights_add: Optional[np.ndarray] = None,
    weights_mul: Optional[np.ndarray] = None,
    subseq: bool = False,
    backtrack: bool = True,
    global_constraints: bool = False,
    band_rad: float = 0.25,
    return_steps: bool = False,
) -> Union[
    np.ndarray, Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, np.ndarray]
]:
    """Dynamic time warping (DTW).

    This function performs a DTW and path backtracking on two sequences.
    We follow the nomenclature and algorithmic approach as described in [#]_.

    .. [#] Meinard Mueller
           Fundamentals of Music Processing — Audio, Analysis, Algorithms, Applications
           Springer Verlag, ISBN: 978-3-319-21944-8, 2015.

    Parameters
    ----------
    X : np.ndarray [shape=(..., K, N)]
        audio feature matrix (e.g., chroma features)

        If ``X`` has more than two dimensions (e.g., for multi-channel inputs), all leading
        dimensions are used when computing distance to ``Y``.

    Y : np.ndarray [shape=(..., K, M)]
        audio feature matrix (e.g., chroma features)

    C : np.ndarray [shape=(N, M)]
        Precomputed distance matrix. If supplied, X and Y must not be supplied and
        ``metric`` will be ignored.

    metric : str
        Identifier for the cost-function as documented
        in `scipy.spatial.distance.cdist()`

    step_sizes_sigma : np.ndarray [shape=[n, 2]]
        Specifies allowed step sizes as used by the dtw.

    weights_add : np.ndarray [shape=[n, ]]
        Additive weights to penalize certain step sizes.

    weights_mul : np.ndarray [shape=[n, ]]
        Multiplicative weights to penalize certain step sizes.

    subseq : bool
        Enable subsequence DTW, e.g., for retrieval tasks.

    backtrack : bool
        Enable backtracking in accumulated cost matrix.

    global_constraints : bool
        Applies global constraints to the cost matrix ``C`` (Sakoe-Chiba band).

    band_rad : float
        The Sakoe-Chiba band radius (1/2 of the width) will be
        ``int(radius*min(C.shape))``.

    return_steps : bool
        If true, the function returns ``steps``, the step matrix, containing
        the indices of the used steps from the cost accumulation step.

    Returns
    -------
    D : np.ndarray [shape=(N, M)]
        accumulated cost matrix.
        D[N, M] is the total alignment cost.
        When doing subsequence DTW, D[N,:] indicates a matching function.
    wp : np.ndarray [shape=(N, 2)]
        Warping path with index pairs.
        Each row of the array contains an index pair (n, m).
        Only returned when ``backtrack`` is True.
    steps : np.ndarray [shape=(N, M)]
        Step matrix, containing the indices of the used steps from the cost
        accumulation step.
        Only returned when ``return_steps`` is True.

    Raises
    ------
    ParameterError
        If you are doing diagonal matching and Y is shorter than X or if an
        incompatible combination of X, Y, and C are supplied.

        If your input dimensions are incompatible.

        If the cost matrix has NaN values.

    Examples
    --------
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> y, sr = librosa.load(librosa.ex('brahms'), offset=10, duration=15)
    >>> X = librosa.feature.chroma_cens(y=y, sr=sr)
    >>> noise = np.random.rand(X.shape[0], 200)
    >>> Y = np.concatenate((noise, noise, X, noise), axis=1)
    >>> D, wp = librosa.sequence.dtw(X, Y, subseq=True)
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> img = librosa.display.specshow(D, x_axis='frames', y_axis='frames',
    ...                                ax=ax[0])
    >>> ax[0].set(title='DTW cost', xlabel='Noisy sequence', ylabel='Target')
    >>> ax[0].plot(wp[:, 1], wp[:, 0], label='Optimal path', color='y')
    >>> ax[0].legend()
    >>> fig.colorbar(img, ax=ax[0])
    >>> ax[1].plot(D[-1, :] / wp.shape[0])
    >>> ax[1].set(xlim=[0, Y.shape[1]], ylim=[0, 2],
    ...           title='Matching cost function')
    """
    # Default Parameters
    default_steps = np.array([[1, 1], [0, 1], [1, 0]], dtype=np.uint32)
    default_weights_add = np.zeros(3, dtype=np.float64)
    default_weights_mul = np.ones(3, dtype=np.float64)

    if step_sizes_sigma is None:
        # Use the default steps
        step_sizes_sigma = default_steps

        # Use default weights if none are provided
        if weights_add is None:
            weights_add = default_weights_add

        if weights_mul is None:
            weights_mul = default_weights_mul
    else:
        # If we have custom steps but no weights, construct them here
        if weights_add is None:
            weights_add = np.zeros(len(step_sizes_sigma), dtype=np.float64)

        if weights_mul is None:
            weights_mul = np.ones(len(step_sizes_sigma), dtype=np.float64)

        # Make the default step weights infinite so that they are never
        # preferred over custom steps
        default_weights_add.fill(np.inf)
        default_weights_mul.fill(np.inf)

        # Append custom steps and weights to our defaults
        step_sizes_sigma = np.concatenate((default_steps, step_sizes_sigma))
        weights_add = np.concatenate((default_weights_add, weights_add))
        weights_mul = np.concatenate((default_weights_mul, weights_mul))

    # These asserts are bad, but mypy cannot trace the code paths properly
    assert step_sizes_sigma is not None
    assert weights_add is not None
    assert weights_mul is not None

    if np.any(step_sizes_sigma < 0):
        raise ParameterError("step_sizes_sigma cannot contain negative values")

    if len(step_sizes_sigma) != len(weights_add):
        raise ParameterError("len(weights_add) must be equal to len(step_sizes_sigma)")
    if len(step_sizes_sigma) != len(weights_mul):
        raise ParameterError("len(weights_mul) must be equal to len(step_sizes_sigma)")

    if C is None and (X is None or Y is None):
        raise ParameterError("If C is not supplied, both X and Y must be supplied")
    if C is not None and (X is not None or Y is not None):
        raise ParameterError("If C is supplied, both X and Y must not be supplied")

    c_is_transposed = False

    # calculate pair-wise distances, unless already supplied.
    # C_local will keep track of whether the distance matrix was supplied
    # by the user (False) or constructed locally (True)
    C_local = False
    if C is None:
        C_local = True
        # mypy can't figure out that this case does not happen
        assert X is not None and Y is not None
        # take care of dimensions
        X = np.atleast_2d(X)
        Y = np.atleast_2d(Y)

        # Perform some shape-squashing here
        # Put the time axes around front
        # Suppress types because mypy doesn't know these are ndarrays
        X = np.swapaxes(X, -1, 0)  # type: ignore
        Y = np.swapaxes(Y, -1, 0)  # type: ignore

        # Flatten the remaining dimensions
        # Use F-ordering to preserve columns
        X = X.reshape((X.shape[0], -1), order="F")
        Y = Y.reshape((Y.shape[0], -1), order="F")

        try:
            C = cdist(X, Y, metric=metric)
        except ValueError as exc:
            raise ParameterError(
                "scipy.spatial.distance.cdist returned an error.\n"
                "Please provide your input in the form X.shape=(K, N) "
                "and Y.shape=(K, M).\n 1-dimensional sequences should "
                "be reshaped to X.shape=(1, N) and Y.shape=(1, M)."
            ) from exc

        # for subsequence matching:
        # if N > M, Y can be a subsequence of X
        if subseq and (X.shape[0] > Y.shape[0]):
            C = C.T
            c_is_transposed = True

    C = np.atleast_2d(C)

    # if diagonal matching, Y has to be longer than X
    # (X simply cannot be contained in Y)
    if np.array_equal(step_sizes_sigma, np.array([[1, 1]])) and (
        C.shape[0] > C.shape[1]
    ):
        raise ParameterError(
            "For diagonal matching: Y.shape[-1] >= X.shape[-11] "
            "(C.shape[1] >= C.shape[0])"
        )

    max_0 = step_sizes_sigma[:, 0].max()
    max_1 = step_sizes_sigma[:, 1].max()

    # check C here for nans before building global constraints
    if np.any(np.isnan(C)):
        raise ParameterError("DTW cost matrix C has NaN values. ")

    if global_constraints:
        # Apply global constraints to the cost matrix
        if not C_local:
            # If C was provided as input, make a copy here
            C = np.copy(C)
        fill_off_diagonal(C, radius=band_rad, value=np.inf)

    # initialize whole matrix with infinity values
    D = np.ones(C.shape + np.array([max_0, max_1])) * np.inf

    # set starting point to C[0, 0]
    D[max_0, max_1] = C[0, 0]

    if subseq:
        D[max_0, max_1:] = C[0, :]

    # initialize step matrix with -1
    # will be filled in calc_accu_cost() with indices from step_sizes_sigma
    steps = np.zeros(D.shape, dtype=np.int32)

    # these steps correspond to left- (first row) and up-(first column) moves
    steps[0, :] = 1
    steps[:, 0] = 2

    # calculate accumulated cost matrix
    D: np.ndarray
    steps: np.ndarray
    D, steps = __dtw_calc_accu_cost(
        C, D, steps, step_sizes_sigma, weights_mul, weights_add, max_0, max_1
    )

    # delete infinity rows and columns
    D = D[max_0:, max_1:]
    steps = steps[max_0:, max_1:]

    return_values: List[np.ndarray]
    if backtrack:
        wp: np.ndarray
        if subseq:
            if np.all(np.isinf(D[-1])):
                raise ParameterError(
                    "No valid sub-sequence warping path could "
                    "be constructed with the given step sizes."
                )
            start = np.argmin(D[-1, :])
            _wp = __dtw_backtracking(steps, step_sizes_sigma, subseq, start)
        else:
            # perform warping path backtracking
            if np.isinf(D[-1, -1]):
                raise ParameterError(
                    "No valid sub-sequence warping path could "
                    "be constructed with the given step sizes."
                )

            _wp = __dtw_backtracking(steps, step_sizes_sigma, subseq)
            if _wp[-1] != (0, 0):
                raise ParameterError(
                    "Unable to compute a full DTW warping path. "
                    "You may want to try again with subseq=True."
                )

        wp = np.asarray(_wp, dtype=int)

        # since we transposed in the beginning, we have to adjust the index pairs back
        if subseq and (
            (X is not None and Y is not None and X.shape[0] > Y.shape[0])
            or c_is_transposed
            or C.shape[0] > C.shape[1]
        ):
            wp = np.fliplr(wp)
        return_values = [D, wp]
    else:
        return_values = [D]

    if return_steps:
        return_values.append(steps)

    if len(return_values) > 1:
        # Suppressing type check here because mypy can't
        # infer the exact length of the tuple
        return tuple(return_values)  # type: ignore
    else:
        return return_values[0]


@jit(nopython=True, cache=False)  # type: ignore
def __dtw_calc_accu_cost(
    C: np.ndarray,
    D: np.ndarray,
    steps: np.ndarray,
    step_sizes_sigma: np.ndarray,
    weights_mul: np.ndarray,
    weights_add: np.ndarray,
    max_0: int,
    max_1: int,
) -> Tuple[np.ndarray, np.ndarray]:  # pragma: no cover
    """Calculate the accumulated cost matrix D.

    Use dynamic programming to calculate the accumulated costs.

    Parameters
    ----------
    C : np.ndarray [shape=(N, M)]
        pre-computed cost matrix
    D : np.ndarray [shape=(N, M)]
        accumulated cost matrix
    steps : np.ndarray [shape=(N, M)]
        Step matrix, containing the indices of the used steps from the cost
        accumulation step.
    step_sizes_sigma : np.ndarray [shape=[n, 2]]
        Specifies allowed step sizes as used by the dtw.
    weights_add : np.ndarray [shape=[n, ]]
        Additive weights to penalize certain step sizes.
    weights_mul : np.ndarray [shape=[n, ]]
        Multiplicative weights to penalize certain step sizes.
    max_0 : int
        maximum number of steps in step_sizes_sigma in dim 0.
    max_1 : int
        maximum number of steps in step_sizes_sigma in dim 1.

    Returns
    -------
    D : np.ndarray [shape=(N, M)]
        accumulated cost matrix.
        D[N, M] is the total alignment cost.
        When doing subsequence DTW, D[N,:] indicates a matching function.
    steps : np.ndarray [shape=(N, M)]
        Step matrix, containing the indices of the used steps from the cost
        accumulation step.

    See Also
    --------
    dtw
    """
    for cur_n in range(max_0, D.shape[0]):
        for cur_m in range(max_1, D.shape[1]):
            # accumulate costs
            for cur_step_idx, cur_w_add, cur_w_mul in zip(
                range(step_sizes_sigma.shape[0]), weights_add, weights_mul
            ):
                cur_D = D[
                    cur_n - step_sizes_sigma[cur_step_idx, 0],
                    cur_m - step_sizes_sigma[cur_step_idx, 1],
                ]
                cur_C = cur_w_mul * C[cur_n - max_0, cur_m - max_1]
                cur_C += cur_w_add
                cur_cost = cur_D + cur_C

                # check if cur_cost is smaller than the one stored in D
                if cur_cost < D[cur_n, cur_m]:
                    D[cur_n, cur_m] = cur_cost

                    # save step-index
                    steps[cur_n, cur_m] = cur_step_idx

    return D, steps


@jit(nopython=True, cache=False)  # type: ignore
def __dtw_backtracking(
    steps: np.ndarray,
    step_sizes_sigma: np.ndarray,
    subseq: bool,
    start: Optional[int] = None,
) -> List[Tuple[int, int]]:  # pragma: no cover
    """Backtrack optimal warping path.

    Uses the saved step sizes from the cost accumulation
    step to backtrack the index pairs for an optimal
    warping path.

    Parameters
    ----------
    steps : np.ndarray [shape=(N, M)]
        Step matrix, containing the indices of the used steps from the cost
        accumulation step.
    step_sizes_sigma : np.ndarray [shape=[n, 2]]
        Specifies allowed step sizes as used by the dtw.
    subseq : bool
        Enable subsequence DTW, e.g., for retrieval tasks.
    start : int
        Start column index for backtraing (only allowed for ``subseq=True``)

    Returns
    -------
    wp : list [shape=(N,)]
        Warping path with index pairs.
        Each list entry contains an index pair
        (n, m) as a tuple

    See Also
    --------
    dtw
    """
    if start is None:
        cur_idx = (steps.shape[0] - 1, steps.shape[1] - 1)
    else:
        cur_idx = (steps.shape[0] - 1, start)

    wp = []
    # Set starting point D(N, M) and append it to the path
    wp.append((cur_idx[0], cur_idx[1]))

    # Loop backwards.
    # Stop criteria:
    # Setting it to (0, 0) does not work for the subsequence dtw,
    # so we only ask to reach the first row of the matrix.

    while (subseq and cur_idx[0] > 0) or (not subseq and cur_idx != (0, 0)):
        cur_step_idx = steps[(cur_idx[0], cur_idx[1])]

        # save tuple with minimal acc. cost in path
        cur_idx = (
            cur_idx[0] - step_sizes_sigma[cur_step_idx][0],
            cur_idx[1] - step_sizes_sigma[cur_step_idx][1],
        )

        # If we run off the side of the cost matrix, break here
        if min(cur_idx) < 0:
            break

        # append to warping path
        wp.append((cur_idx[0], cur_idx[1]))

    return wp


def dtw_backtracking(
    steps: np.ndarray,
    *,
    step_sizes_sigma: Optional[np.ndarray] = None,
    subseq: bool = False,
    start: Optional[Union[int, np.integer[Any]]] = None,
) -> np.ndarray:
    """Backtrack a warping path.

    Uses the saved step sizes from the cost accumulation
    step to backtrack the index pairs for a warping path.

    Parameters
    ----------
    steps : np.ndarray [shape=(N, M)]
        Step matrix, containing the indices of the used steps from the cost
        accumulation step.
    step_sizes_sigma : np.ndarray [shape=[n, 2]]
        Specifies allowed step sizes as used by the dtw.
    subseq : bool
        Enable subsequence DTW, e.g., for retrieval tasks.
    start : int
        Start column index for backtraing (only allowed for ``subseq=True``)

    Returns
    -------
    wp : list [shape=(N,)]
        Warping path with index pairs.
        Each list entry contains an index pair
        (n, m) as a tuple

    See Also
    --------
    dtw
    """
    if subseq is False and start is not None:
        raise ParameterError(
            f"start is only allowed to be set if subseq is True (start={start}, subseq={subseq})"
        )

    # Default Parameters
    default_steps = np.array([[1, 1], [0, 1], [1, 0]], dtype=np.uint32)

    if step_sizes_sigma is None:
        # Use the default steps
        step_sizes_sigma = default_steps
    else:
        # Append custom steps and weights to our defaults
        step_sizes_sigma = np.concatenate((default_steps, step_sizes_sigma))

    wp = __dtw_backtracking(steps, step_sizes_sigma, subseq, start)
    return np.asarray(wp, dtype=int)


@overload
def rqa(
    sim: np.ndarray,
    *,
    gap_onset: float = ...,
    gap_extend: float = ...,
    knight_moves: bool = ...,
    backtrack: Literal[False],
) -> np.ndarray:
    ...


@overload
def rqa(
    sim: np.ndarray,
    *,
    gap_onset: float = ...,
    gap_extend: float = ...,
    knight_moves: bool = ...,
    backtrack: Literal[True] = ...,
) -> Tuple[np.ndarray, np.ndarray]:
    ...


@overload
def rqa(
    sim: np.ndarray,
    *,
    gap_onset: float = ...,
    gap_extend: float = ...,
    knight_moves: bool = ...,
    backtrack: bool = ...,
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
    ...


def rqa(
    sim: np.ndarray,
    *,
    gap_onset: float = 1,
    gap_extend: float = 1,
    knight_moves: bool = True,
    backtrack: bool = True,
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
    """Recurrence quantification analysis (RQA)

    This function implements different forms of RQA as described by
    Serra, Serra, and Andrzejak (SSA). [#]_  These methods take as input
    a self- or cross-similarity matrix ``sim``, and calculate the value
    of path alignments by dynamic programming.

    Note that unlike dynamic time warping (`dtw`), alignment paths here are
    maximized, not minimized, so the input should measure similarity rather
    than distance.

    The simplest RQA method, denoted as `L` (SSA equation 3) and equivalent
    to the method described by Eckman, Kamphorst, and Ruelle [#]_, accumulates
    the length of diagonal paths with positive values in the input:

        - ``score[i, j] = score[i-1, j-1] + 1``  if ``sim[i, j] > 0``
        - ``score[i, j] = 0`` otherwise.

    The second method, denoted as `S` (SSA equation 4), is similar to the first,
    but allows for "knight moves" (as in the chess piece) in addition to strict
    diagonal moves:

        - ``score[i, j] = max(score[i-1, j-1], score[i-2, j-1], score[i-1, j-2]) + 1``  if ``sim[i, j] >
          0``
        - ``score[i, j] = 0`` otherwise.

    The third method, denoted as `Q` (SSA equations 5 and 6) extends this by
    allowing gaps in the alignment that incur some cost, rather than a hard
    reset to 0 whenever ``sim[i, j] == 0``.
    Gaps are penalized by two additional parameters, ``gap_onset`` and ``gap_extend``,
    which are subtracted from the value of the alignment path every time a gap
    is introduced or extended (respectively).

    Note that setting ``gap_onset`` and ``gap_extend`` to `np.inf` recovers the second
    method, and disabling knight moves recovers the first.

    .. [#] Serrà, Joan, Xavier Serra, and Ralph G. Andrzejak.
        "Cross recurrence quantification for cover song identification."
        New Journal of Physics 11, no. 9 (2009): 093017.

    .. [#] Eckmann, J. P., S. Oliffson Kamphorst, and D. Ruelle.
        "Recurrence plots of dynamical systems."
        World Scientific Series on Nonlinear Science Series A 16 (1995): 441-446.

    Parameters
    ----------
    sim : np.ndarray [shape=(N, M), non-negative]
        The similarity matrix to use as input.

        This can either be a recurrence matrix (self-similarity)
        or a cross-similarity matrix between two sequences.

    gap_onset : float > 0
        Penalty for introducing a gap to an alignment sequence

    gap_extend : float > 0
        Penalty for extending a gap in an alignment sequence

    knight_moves : bool
        If ``True`` (default), allow for "knight moves" in the alignment,
        e.g., ``(n, m) => (n + 1, m + 2)`` or ``(n + 2, m + 1)``.

        If ``False``, only allow for diagonal moves ``(n, m) => (n + 1, m + 1)``.

    backtrack : bool
        If ``True``, return the alignment path.

        If ``False``, only return the score matrix.

    Returns
    -------
    score : np.ndarray [shape=(N, M)]
        The alignment score matrix.  ``score[n, m]`` is the cumulative value of
        the best alignment sequence ending in frames ``n`` and ``m``.
    path : np.ndarray [shape=(k, 2)] (optional)
        If ``backtrack=True``, ``path`` contains a list of pairs of aligned frames
        in the best alignment sequence.

        ``path[i] = [n, m]`` indicates that row ``n`` aligns to column ``m``.

    See Also
    --------
    librosa.segment.recurrence_matrix
    librosa.segment.cross_similarity
    dtw

    Examples
    --------
    Simple diagonal path enhancement (L-mode)

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=30)
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    >>> # Use time-delay embedding to reduce noise
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
    >>> # Build recurrence, suppress self-loops within 1 second
    >>> rec = librosa.segment.recurrence_matrix(chroma_stack, width=43,
    ...                                         mode='affinity',
    ...                                         metric='cosine')
    >>> # using infinite cost for gaps enforces strict path continuation
    >>> L_score, L_path = librosa.sequence.rqa(rec,
    ...                                        gap_onset=np.inf,
    ...                                        gap_extend=np.inf,
    ...                                        knight_moves=False)
    >>> fig, ax = plt.subplots(ncols=2)
    >>> librosa.display.specshow(rec, x_axis='frames', y_axis='frames', ax=ax[0])
    >>> ax[0].set(title='Recurrence matrix')
    >>> librosa.display.specshow(L_score, x_axis='frames', y_axis='frames', ax=ax[1])
    >>> ax[1].set(title='Alignment score matrix')
    >>> ax[1].plot(L_path[:, 1], L_path[:, 0], label='Optimal path', color='c')
    >>> ax[1].legend()
    >>> ax[1].label_outer()

    Full alignment using gaps and knight moves

    >>> # New gaps cost 5, extending old gaps cost 10 for each step
    >>> score, path = librosa.sequence.rqa(rec, gap_onset=5, gap_extend=10)
    >>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
    >>> librosa.display.specshow(rec, x_axis='frames', y_axis='frames', ax=ax[0])
    >>> ax[0].set(title='Recurrence matrix')
    >>> librosa.display.specshow(score, x_axis='frames', y_axis='frames', ax=ax[1])
    >>> ax[1].set(title='Alignment score matrix')
    >>> ax[1].plot(path[:, 1], path[:, 0], label='Optimal path', color='c')
    >>> ax[1].legend()
    >>> ax[1].label_outer()
    """

    if gap_onset < 0:
        raise ParameterError("gap_onset={} must be strictly positive")
    if gap_extend < 0:
        raise ParameterError("gap_extend={} must be strictly positive")

    score: np.ndarray
    pointers: np.ndarray
    score, pointers = __rqa_dp(sim, gap_onset, gap_extend, knight_moves)
    if backtrack:
        path = __rqa_backtrack(score, pointers)
        return score, path

    return score


@jit(nopython=True, cache=False)  # type: ignore
def __rqa_dp(
    sim: np.ndarray, gap_onset: float, gap_extend: float, knight: bool
) -> Tuple[np.ndarray, np.ndarray]:  # pragma: no cover
    """RQA dynamic programming implementation"""

    # The output array
    score = np.zeros(sim.shape, dtype=sim.dtype)

    # The backtracking array
    backtrack = np.zeros(sim.shape, dtype=np.int8)

    # These are place-holder arrays to limit the points being considered
    # at each step of the DP
    #
    # If knight moves are enabled, values are indexed according to
    # [(-1,-1), (-1, -2), (-2, -1)]
    #
    # If knight moves are disabled, then only the first entry is used.
    #
    # Using dummy vectors here makes the code a bit cleaner down below.
    sim_values = np.zeros(3)
    score_values = np.zeros(3)
    vec = np.zeros(3)

    if knight:
        # Initial limit is for the base case: diagonal + one knight
        init_limit = 2

        # Otherwise, we have 3 positions
        limit = 3
    else:
        init_limit = 1
        limit = 1

    # backtracking rubric:
    #   0 ==> diagonal move
    #   1 ==> knight move up
    #   2 ==> knight move left
    #  -1 ==> reset without inclusion
    #  -2 ==> reset with inclusion (ie positive value at init)

    # Initialize the first row and column with the data
    score[0, :] = sim[0, :]
    score[:, 0] = sim[:, 0]

    # backtracking initialization: the first row and column are all resets
    # if there's a positive link here, it's an inclusive reset
    for i in range(sim.shape[0]):
        if sim[i, 0]:
            backtrack[i, 0] = -2
        else:
            backtrack[i, 0] = -1

    for j in range(sim.shape[1]):
        if sim[0, j]:
            backtrack[0, j] = -2
        else:
            backtrack[0, j] = -1

    # Initialize the 1-1 case using only the diagonal
    if sim[1, 1] > 0:
        score[1, 1] = score[0, 0] + sim[1, 1]
        backtrack[1, 1] = 0
    else:
        link = sim[0, 0] > 0
        score[1, 1] = max(0, score[0, 0] - (link) * gap_onset - (~link) * gap_extend)
        if score[1, 1] > 0:
            backtrack[1, 1] = 0
        else:
            backtrack[1, 1] = -1

    # Initialize the second row with diagonal and left-knight moves
    i = 1
    for j in range(2, sim.shape[1]):
        score_values[:-1] = (score[i - 1, j - 1], score[i - 1, j - 2])
        sim_values[:-1] = (sim[i - 1, j - 1], sim[i - 1, j - 2])
        t_values = sim_values > 0
        if sim[i, j] > 0:
            backtrack[i, j] = np.argmax(score_values[:init_limit])
            score[i, j] = score_values[backtrack[i, j]] + sim[i, j]  # or + 1 for binary
        else:
            vec[:init_limit] = (
                score_values[:init_limit]
                - t_values[:init_limit] * gap_onset
                - (~t_values[:init_limit]) * gap_extend
            )

            backtrack[i, j] = np.argmax(vec[:init_limit])
            score[i, j] = max(0, vec[backtrack[i, j]])
            # Is it a reset?
            if score[i, j] == 0:
                backtrack[i, j] = -1

    # Initialize the second column with diagonal and up-knight moves
    j = 1
    for i in range(2, sim.shape[0]):
        score_values[:-1] = (score[i - 1, j - 1], score[i - 2, j - 1])
        sim_values[:-1] = (sim[i - 1, j - 1], sim[i - 2, j - 1])
        t_values = sim_values > 0
        if sim[i, j] > 0:
            backtrack[i, j] = np.argmax(score_values[:init_limit])
            score[i, j] = score_values[backtrack[i, j]] + sim[i, j]  # or + 1 for binary

        else:
            vec[:init_limit] = (
                score_values[:init_limit]
                - t_values[:init_limit] * gap_onset
                - (~t_values[:init_limit]) * gap_extend
            )

            backtrack[i, j] = np.argmax(vec[:init_limit])
            score[i, j] = max(0, vec[backtrack[i, j]])
            # Is it a reset?
            if score[i, j] == 0:
                backtrack[i, j] = -1

    # Now fill in the rest of the table
    for i in range(2, sim.shape[0]):
        for j in range(2, sim.shape[1]):
            score_values[:] = (
                score[i - 1, j - 1],
                score[i - 1, j - 2],
                score[i - 2, j - 1],
            )
            sim_values[:] = (sim[i - 1, j - 1], sim[i - 1, j - 2], sim[i - 2, j - 1])
            t_values = sim_values > 0
            if sim[i, j] > 0:
                # if knight is true, it's max of (-1,-1), (-1, -2), (-2, -1)
                # otherwise, it's just the diagonal move (-1, -1)
                # for backtracking purposes, if the max is 0 then it's the start of a new sequence
                # if the max is non-zero, then we extend the existing sequence
                backtrack[i, j] = np.argmax(score_values[:limit])
                score[i, j] = (
                    score_values[backtrack[i, j]] + sim[i, j]
                )  # or + 1 for binary

            else:
                # if the max of our options is negative, then it's a hard reset
                # otherwise, it's a skip move
                vec[:limit] = (
                    score_values[:limit]
                    - t_values[:limit] * gap_onset
                    - (~t_values[:limit]) * gap_extend
                )

                backtrack[i, j] = np.argmax(vec[:limit])
                score[i, j] = max(0, vec[backtrack[i, j]])
                # Is it a reset?
                if score[i, j] == 0:
                    backtrack[i, j] = -1

    return score, backtrack


def __rqa_backtrack(score, pointers):
    """RQA path backtracking

    Given the score matrix and backtracking index array,
    reconstruct the optimal path.
    """

    # backtracking rubric:
    #   0 ==> diagonal move
    #   1 ==> knight move up
    #   2 ==> knight move left
    #  -1 ==> reset (sim = 0)
    #  -2 ==> start of sequence (sim > 0)

    # This array maps the backtracking values to the
    # relative index offsets
    offsets = [(-1, -1), (-1, -2), (-2, -1)]

    # Find the maximum to end the path
    idx = list(np.unravel_index(np.argmax(score), score.shape))

    # Construct the path
    path: List = []
    while True:
        bt_index = pointers[tuple(idx)]

        # A -1 indicates a non-inclusive reset
        # this can only happen when sim[idx] == 0,
        # and a reset with zero score should not be included
        # in the path.  In this case, we're done.
        if bt_index == -1:
            break

        # Other bt_index values are okay for inclusion
        path.insert(0, idx)

        # -2 indicates beginning of sequence,
        # so we can't backtrack any further
        if bt_index == -2:
            break

        # Otherwise, prepend this index and continue
        idx = [idx[_] + offsets[bt_index][_] for _ in range(len(idx))]

    # If there's no alignment path at all, eg an empty cross-similarity
    # matrix, return a properly shaped and typed array
    if not path:
        return np.empty((0, 2), dtype=np.uint)

    return np.asarray(path, dtype=np.uint)


@jit(nopython=True, cache=False)  # type: ignore
def _viterbi(
    log_prob: np.ndarray, log_trans: np.ndarray, log_p_init: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:  # pragma: no cover
    """Core Viterbi algorithm.

    This is intended for internal use only.

    Parameters
    ----------
    log_prob : np.ndarray [shape=(T, m)]
        ``log_prob[t, s]`` is the conditional log-likelihood
        ``log P[X = X(t) | State(t) = s]``
    log_trans : np.ndarray [shape=(m, m)]
        The log transition matrix
        ``log_trans[i, j] = log P[State(t+1) = j | State(t) = i]``
    log_p_init : np.ndarray [shape=(m,)]
        log of the initial state distribution

    Returns
    -------
    None
        All computations are performed in-place on ``state, value, ptr``.
    """
    n_steps, n_states = log_prob.shape

    state = np.zeros(n_steps, dtype=np.uint16)
    value = np.zeros((n_steps, n_states), dtype=np.float64)
    ptr = np.zeros((n_steps, n_states), dtype=np.uint16)

    # factor in initial state distribution
    value[0] = log_prob[0] + log_p_init

    for t in range(1, n_steps):
        # Want V[t, j] <- p[t, j] * max_k V[t-1, k] * A[k, j]
        #    assume at time t-1 we were in state k
        #    transition k -> j

        # Broadcast over rows:
        #    Tout[k, j] = V[t-1, k] * A[k, j]
        #    then take the max over columns
        # We'll do this in log-space for stability

        trans_out = value[t - 1] + log_trans.T

        # Unroll the max/argmax loop to enable numba support
        for j in range(n_states):
            ptr[t, j] = np.argmax(trans_out[j])
            # value[t, j] = log_prob[t, j] + np.max(trans_out[j])
            value[t, j] = log_prob[t, j] + trans_out[j, ptr[t][j]]

    # Now roll backward

    # Get the last state
    state[-1] = np.argmax(value[-1])

    for t in range(n_steps - 2, -1, -1):
        state[t] = ptr[t + 1, state[t + 1]]

    logp = value[-1:, state[-1]]

    return state, logp


@overload
def viterbi(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_init: Optional[np.ndarray] = ...,
    return_logp: Literal[True],
) -> Tuple[np.ndarray, np.ndarray]:
    ...


@overload
def viterbi(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_init: Optional[np.ndarray] = ...,
    return_logp: Literal[False] = ...,
) -> np.ndarray:
    ...


def viterbi(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_init: Optional[np.ndarray] = None,
    return_logp: bool = False,
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
    """Viterbi decoding from observation likelihoods.

    Given a sequence of observation likelihoods ``prob[s, t]``,
    indicating the conditional likelihood of seeing the observation
    at time ``t`` from state ``s``, and a transition matrix
    ``transition[i, j]`` which encodes the conditional probability of
    moving from state ``i`` to state ``j``, the Viterbi algorithm [#]_ computes
    the most likely sequence of states from the observations.

    .. [#] Viterbi, Andrew. "Error bounds for convolutional codes and an
        asymptotically optimum decoding algorithm."
        IEEE transactions on Information Theory 13.2 (1967): 260-269.

    Parameters
    ----------
    prob : np.ndarray [shape=(..., n_states, n_steps), non-negative]
        ``prob[..., s, t]`` is the probability of observation at time ``t``
        being generated by state ``s``.
    transition : np.ndarray [shape=(n_states, n_states), non-negative]
        ``transition[i, j]`` is the probability of a transition from i->j.
        Each row must sum to 1.
    p_init : np.ndarray [shape=(n_states,)]
        Optional: initial state distribution.
        If not provided, a uniform distribution is assumed.
    return_logp : bool
        If ``True``, return the log-likelihood of the state sequence.

    Returns
    -------
    Either ``states`` or ``(states, logp)``:
    states : np.ndarray [shape=(..., n_steps,)]
        The most likely state sequence.
        If ``prob`` contains multiple channels of input, then each channel is
        decoded independently.
    logp : scalar [float] or np.ndarray
        If ``return_logp=True``, the log probability of ``states`` given
        the observations.

    See Also
    --------
    viterbi_discriminative : Viterbi decoding from state likelihoods

    Examples
    --------
    Example from https://en.wikipedia.org/wiki/Viterbi_algorithm#Example

    In this example, we have two states ``healthy`` and ``fever``, with
    initial probabilities 60% and 40%.

    We have three observation possibilities: ``normal``, ``cold``, and
    ``dizzy``, whose probabilities given each state are:

    ``healthy => {normal: 50%, cold: 40%, dizzy: 10%}`` and
    ``fever => {normal: 10%, cold: 30%, dizzy: 60%}``

    Finally, we have transition probabilities:

    ``healthy => healthy (70%)`` and
    ``fever => fever (60%)``.

    Over three days, we observe the sequence ``[normal, cold, dizzy]``,
    and wish to know the maximum likelihood assignment of states for the
    corresponding days, which we compute with the Viterbi algorithm below.

    >>> p_init = np.array([0.6, 0.4])
    >>> p_emit = np.array([[0.5, 0.4, 0.1],
    ...                    [0.1, 0.3, 0.6]])
    >>> p_trans = np.array([[0.7, 0.3], [0.4, 0.6]])
    >>> path, logp = librosa.sequence.viterbi(p_emit, p_trans, p_init=p_init,
    ...                                       return_logp=True)
    >>> print(logp, path)
    -4.19173690823075 [0 0 1]
    """

    n_states, n_steps = prob.shape[-2:]

    if transition.shape != (n_states, n_states):
        raise ParameterError(
            f"transition.shape={transition.shape}, must be "
            f"(n_states, n_states)={n_states, n_states}"
        )

    if np.any(transition < 0) or not np.allclose(transition.sum(axis=1), 1):
        raise ParameterError(
            "Invalid transition matrix: must be non-negative "
            "and sum to 1 on each row."
        )

    if np.any(prob < 0) or np.any(prob > 1):
        raise ParameterError("Invalid probability values: must be between 0 and 1.")

    # Compute log-likelihoods while avoiding log-underflow
    epsilon = tiny(prob)

    if p_init is None:
        p_init = np.empty(n_states)
        p_init.fill(1.0 / n_states)
    elif (
        np.any(p_init < 0)
        or not np.allclose(p_init.sum(), 1)
        or p_init.shape != (n_states,)
    ):
        raise ParameterError(f"Invalid initial state distribution: p_init={p_init}")

    log_trans = np.log(transition + epsilon)
    log_prob = np.log(prob + epsilon)
    log_p_init = np.log(p_init + epsilon)

    def _helper(lp):
        # Transpose input
        _state, logp = _viterbi(lp.T, log_trans, log_p_init)
        # Transpose outputs for return
        return _state.T, logp

    states: np.ndarray
    logp: np.ndarray

    if log_prob.ndim == 2:
        states, logp = _helper(log_prob)
    else:
        # Vectorize the helper
        __viterbi = np.vectorize(
            _helper, otypes=[np.uint16, np.float64], signature="(s,t)->(t),(1)"
        )

        states, logp = __viterbi(log_prob)

        # Flatten out the trailing dimension introduced by vectorization
        logp = logp[..., 0]

    if return_logp:
        return states, logp

    return states


@overload
def viterbi_discriminative(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_state: Optional[np.ndarray] = ...,
    p_init: Optional[np.ndarray] = ...,
    return_logp: Literal[False] = ...,
) -> np.ndarray:
    ...


@overload
def viterbi_discriminative(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_state: Optional[np.ndarray] = ...,
    p_init: Optional[np.ndarray] = ...,
    return_logp: Literal[True],
) -> Tuple[np.ndarray, np.ndarray]:
    ...


@overload
def viterbi_discriminative(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_state: Optional[np.ndarray] = ...,
    p_init: Optional[np.ndarray] = ...,
    return_logp: bool,
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
    ...


def viterbi_discriminative(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_state: Optional[np.ndarray] = None,
    p_init: Optional[np.ndarray] = None,
    return_logp: bool = False,
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
    """Viterbi decoding from discriminative state predictions.

    Given a sequence of conditional state predictions ``prob[s, t]``,
    indicating the conditional likelihood of state ``s`` given the
    observation at time ``t``, and a transition matrix ``transition[i, j]``
    which encodes the conditional probability of moving from state ``i``
    to state ``j``, the Viterbi algorithm computes the most likely sequence
    of states from the observations.

    This implementation uses the standard Viterbi decoding algorithm
    for observation likelihood sequences, under the assumption that
    ``P[Obs(t) | State(t) = s]`` is proportional to
    ``P[State(t) = s | Obs(t)] / P[State(t) = s]``, where the denominator
    is the marginal probability of state ``s`` occurring as given by ``p_state``.

    Note that because the denominator ``P[State(t) = s]`` is not explicitly
    calculated, the resulting probabilities (or log-probabilities) are not
    normalized.  If using the `return_logp=True` option (see below),
    be aware that the "probabilities" may not sum to (and may exceed) 1.

    Parameters
    ----------
    prob : np.ndarray [shape=(..., n_states, n_steps), non-negative]
        ``prob[s, t]`` is the probability of state ``s`` conditional on
        the observation at time ``t``.
        Must be non-negative and sum to 1 along each column.
    transition : np.ndarray [shape=(n_states, n_states), non-negative]
        ``transition[i, j]`` is the probability of a transition from i->j.
        Each row must sum to 1.
    p_state : np.ndarray [shape=(n_states,)]
        Optional: marginal probability distribution over states,
        must be non-negative and sum to 1.
        If not provided, a uniform distribution is assumed.
    p_init : np.ndarray [shape=(n_states,)]
        Optional: initial state distribution.
        If not provided, it is assumed to be uniform.
    return_logp : bool
        If ``True``, return the log-likelihood of the state sequence.

    Returns
    -------
    Either ``states`` or ``(states, logp)``:
    states : np.ndarray [shape=(..., n_steps,)]
        The most likely state sequence.
        If ``prob`` contains multiple input channels,
        then each channel is decoded independently.
    logp : scalar [float] or np.ndarray
        If ``return_logp=True``, the (unnormalized) log probability
        of ``states`` given the observations.

    See Also
    --------
    viterbi :
        Viterbi decoding from observation likelihoods
    viterbi_binary :
        Viterbi decoding for multi-label, conditional state likelihoods

    Examples
    --------
    This example constructs a simple, template-based discriminative chord estimator,
    using CENS chroma as input features.

    .. note:: this chord model is not accurate enough to use in practice. It is only
            intended to demonstrate how to use discriminative Viterbi decoding.

    >>> # Create templates for major, minor, and no-chord qualities
    >>> maj_template = np.array([1,0,0, 0,1,0, 0,1,0, 0,0,0])
    >>> min_template = np.array([1,0,0, 1,0,0, 0,1,0, 0,0,0])
    >>> N_template   = np.array([1,1,1, 1,1,1, 1,1,1, 1,1,1.]) / 4.
    >>> # Generate the weighting matrix that maps chroma to labels
    >>> weights = np.zeros((25, 12), dtype=float)
    >>> labels = ['C:maj', 'C#:maj', 'D:maj', 'D#:maj', 'E:maj', 'F:maj',
    ...           'F#:maj', 'G:maj', 'G#:maj', 'A:maj', 'A#:maj', 'B:maj',
    ...           'C:min', 'C#:min', 'D:min', 'D#:min', 'E:min', 'F:min',
    ...           'F#:min', 'G:min', 'G#:min', 'A:min', 'A#:min', 'B:min',
    ...           'N']
    >>> for c in range(12):
    ...     weights[c, :] = np.roll(maj_template, c) # c:maj
    ...     weights[c + 12, :] = np.roll(min_template, c)  # c:min
    >>> weights[-1] = N_template  # the last row is the no-chord class
    >>> # Make a self-loop transition matrix over 25 states
    >>> trans = librosa.sequence.transition_loop(25, 0.9)

    >>> # Load in audio and make features
    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=15)
    >>> # Suppress percussive elements
    >>> y = librosa.effects.harmonic(y, margin=4)
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    >>> # Map chroma (observations) to class (state) likelihoods
    >>> probs = np.exp(weights.dot(chroma))  # P[class | chroma] ~= exp(template' chroma)
    >>> probs /= probs.sum(axis=0, keepdims=True)  # probabilities must sum to 1 in each column
    >>> # Compute independent frame-wise estimates
    >>> chords_ind = np.argmax(probs, axis=0)
    >>> # And viterbi estimates
    >>> chords_vit = librosa.sequence.viterbi_discriminative(probs, trans)

    >>> # Plot the features and prediction map
    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2)
    >>> librosa.display.specshow(chroma, x_axis='time', y_axis='chroma', ax=ax[0])
    >>> librosa.display.specshow(weights, x_axis='chroma', ax=ax[1])
    >>> ax[1].set(yticks=np.arange(25) + 0.5, yticklabels=labels, ylabel='Chord')

    >>> # And plot the results
    >>> fig, ax = plt.subplots()
    >>> librosa.display.specshow(probs, x_axis='time', cmap='gray', ax=ax)
    >>> times = librosa.times_like(chords_vit)
    >>> ax.scatter(times, chords_ind + 0.25, color='lime', alpha=0.5, marker='+',
    ...            s=15, label='Independent')
    >>> ax.scatter(times, chords_vit - 0.25, color='deeppink', alpha=0.5, marker='o',
    ...            s=15, label='Viterbi')
    >>> ax.set(yticks=np.unique(chords_vit),
    ...        yticklabels=[labels[i] for i in np.unique(chords_vit)])
    >>> ax.legend()
    """

    n_states, n_steps = prob.shape[-2:]

    if transition.shape != (n_states, n_states):
        raise ParameterError(
            f"transition.shape={transition.shape}, must be "
            f"(n_states, n_states)={n_states, n_states}"
        )

    if np.any(transition < 0) or not np.allclose(transition.sum(axis=1), 1):
        raise ParameterError(
            "Invalid transition matrix: must be non-negative "
            "and sum to 1 on each row."
        )

    if np.any(prob < 0) or not np.allclose(prob.sum(axis=-2), 1):
        raise ParameterError(
            "Invalid probability values: each column must "
            "sum to 1 and be non-negative"
        )

    # Compute log-likelihoods while avoiding log-underflow
    epsilon = tiny(prob)

    # Compute marginal log probabilities while avoiding underflow
    if p_state is None:
        p_state = np.empty(n_states)
        p_state.fill(1.0 / n_states)
    elif p_state.shape != (n_states,):
        raise ParameterError(
            "Marginal distribution p_state must have shape (n_states,). "
            f"Got p_state.shape={p_state.shape}"
        )
    elif np.any(p_state < 0) or not np.allclose(p_state.sum(axis=-1), 1):
        raise ParameterError(f"Invalid marginal state distribution: p_state={p_state}")

    if p_init is None:
        p_init = np.empty(n_states)
        p_init.fill(1.0 / n_states)
    elif (
        np.any(p_init < 0)
        or not np.allclose(p_init.sum(), 1)
        or p_init.shape != (n_states,)
    ):
        raise ParameterError(f"Invalid initial state distribution: p_init={p_init}")

    # By Bayes' rule, P[X | Y] * P[Y] = P[Y | X] * P[X]
    # P[X] is constant for the sake of maximum likelihood inference
    # and P[Y] is given by the marginal distribution p_state.
    #
    # So we have P[X | y] \propto P[Y | x] / P[Y]
    # if X = observation and Y = states, this can be done in log space as
    # log P[X | y] \propto \log P[Y | x] - \log P[Y]
    log_p_init = np.log(p_init + epsilon)
    log_trans = np.log(transition + epsilon)
    log_marginal = np.log(p_state + epsilon)

    # reshape to broadcast against prob
    log_marginal = expand_to(log_marginal, ndim=prob.ndim, axes=-2)

    log_prob = np.log(prob + epsilon) - log_marginal

    def _helper(lp):
        # Transpose input
        _state, logp = _viterbi(lp.T, log_trans, log_p_init)
        # Transpose outputs for return
        return _state.T, logp

    states: np.ndarray
    logp: np.ndarray
    if log_prob.ndim == 2:
        states, logp = _helper(log_prob)
    else:
        # Vectorize the helper
        __viterbi = np.vectorize(
            _helper, otypes=[np.uint16, np.float64], signature="(s,t)->(t),(1)"
        )

        states, logp = __viterbi(log_prob)

    # Flatten out the trailing dimension
    logp = logp[..., 0]

    if return_logp:
        return states, logp

    return states


@overload
def viterbi_binary(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_state: Optional[np.ndarray] = ...,
    p_init: Optional[np.ndarray] = ...,
    return_logp: Literal[False] = ...,
) -> np.ndarray:
    ...


@overload
def viterbi_binary(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_state: Optional[np.ndarray] = ...,
    p_init: Optional[np.ndarray] = ...,
    return_logp: Literal[True],
) -> Tuple[np.ndarray, np.ndarray]:
    ...


@overload
def viterbi_binary(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_state: Optional[np.ndarray] = ...,
    p_init: Optional[np.ndarray] = ...,
    return_logp: bool = ...,
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
    ...


def viterbi_binary(
    prob: np.ndarray,
    transition: np.ndarray,
    *,
    p_state: Optional[np.ndarray] = None,
    p_init: Optional[np.ndarray] = None,
    return_logp: bool = False,
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
    """Viterbi decoding from binary (multi-label), discriminative state predictions.

    Given a sequence of conditional state predictions ``prob[s, t]``,
    indicating the conditional likelihood of state ``s`` being active
    conditional on observation at time ``t``, and a 2*2 transition matrix
    ``transition`` which encodes the conditional probability of moving from
    state ``s`` to state ``~s`` (not-``s``), the Viterbi algorithm computes the
    most likely sequence of states from the observations.

    This function differs from `viterbi_discriminative` in that it does not assume the
    states to be mutually exclusive.  `viterbi_binary` is implemented by
    transforming the multi-label decoding problem to a collection
    of binary Viterbi problems (one for each *state* or label).

    The output is a binary matrix ``states[s, t]`` indicating whether each
    state ``s`` is active at time ``t``.

    Like `viterbi_discriminative`, the probabilities of the optimal state sequences
    are not normalized here.  If using the `return_logp=True` option (see below),
    be aware that the "probabilities" may not sum to (and may exceed) 1.

    Parameters
    ----------
    prob : np.ndarray [shape=(..., n_steps,) or (..., n_states, n_steps)], non-negative
        ``prob[s, t]`` is the probability of state ``s`` being active
        conditional on the observation at time ``t``.
        Must be non-negative and less than 1.

        If ``prob`` is 1-dimensional, it is expanded to shape ``(1, n_steps)``.

        If ``prob`` contains multiple input channels, then each channel is decoded independently.

    transition : np.ndarray [shape=(2, 2) or (n_states, 2, 2)], non-negative
        If 2-dimensional, the same transition matrix is applied to each sub-problem.
        ``transition[0, i]`` is the probability of the state going from inactive to ``i``,
        ``transition[1, i]`` is the probability of the state going from active to ``i``.
        Each row must sum to 1.

        If 3-dimensional, ``transition[s]`` is interpreted as the 2x2 transition matrix
        for state label ``s``.

    p_state : np.ndarray [shape=(n_states,)]
        Optional: marginal probability for each state (between [0,1]).
        If not provided, a uniform distribution (0.5 for each state)
        is assumed.

    p_init : np.ndarray [shape=(n_states,)]
        Optional: initial state distribution.
        If not provided, it is assumed to be uniform.

    return_logp : bool
        If ``True``, return the (unnormalized) log-likelihood of the state sequences.

    Returns
    -------
    Either ``states`` or ``(states, logp)``:
    states : np.ndarray [shape=(..., n_states, n_steps)]
        The most likely state sequence.
    logp : np.ndarray [shape=(..., n_states,)]
        If ``return_logp=True``, the (unnormalized) log probability of each
        state activation sequence ``states``

    See Also
    --------
    viterbi :
        Viterbi decoding from observation likelihoods
    viterbi_discriminative :
        Viterbi decoding for discriminative (mutually exclusive) state predictions

    Examples
    --------
    In this example, we have a sequence of binary state likelihoods that we want to de-noise
    under the assumption that state changes are relatively uncommon.  Positive predictions
    should only be retained if they persist for multiple steps, and any transient predictions
    should be considered as errors.  This use case arises frequently in problems such as
    instrument recognition, where state activations tend to be stable over time, but subject
    to abrupt changes (e.g., when an instrument joins the mix).

    We assume that the 0 state has a self-transition probability of 90%, and the 1 state
    has a self-transition probability of 70%.  We assume the marginal and initial
    probability of either state is 50%.

    >>> trans = np.array([[0.9, 0.1], [0.3, 0.7]])
    >>> prob = np.array([0.1, 0.7, 0.4, 0.3, 0.8, 0.9, 0.8, 0.2, 0.6, 0.3])
    >>> librosa.sequence.viterbi_binary(prob, trans, p_state=0.5, p_init=0.5)
    array([[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]])
    """

    prob = np.atleast_2d(prob)

    n_states, n_steps = prob.shape[-2:]

    if transition.shape == (2, 2):
        transition = np.tile(transition, (n_states, 1, 1))
    elif transition.shape != (n_states, 2, 2):
        raise ParameterError(
            f"transition.shape={transition.shape}, must be (2, 2) or "
            f"(n_states, 2, 2)={n_states}"
        )

    if np.any(transition < 0) or not np.allclose(transition.sum(axis=-1), 1):
        raise ParameterError(
            "Invalid transition matrix: must be non-negative "
            "and sum to 1 on each row."
        )

    if np.any(prob < 0) or np.any(prob > 1):
        raise ParameterError("Invalid probability values: prob must be between [0, 1]")

    if p_state is None:
        p_state = np.empty(n_states)
        p_state.fill(0.5)
    else:
        p_state = np.atleast_1d(p_state)

    assert p_state is not None

    if p_state.shape != (n_states,) or np.any(p_state < 0) or np.any(p_state > 1):
        raise ParameterError(f"Invalid marginal state distributions: p_state={p_state}")

    if p_init is None:
        p_init = np.empty(n_states)
        p_init.fill(0.5)
    else:
        p_init = np.atleast_1d(p_init)

    assert p_init is not None

    if p_init.shape != (n_states,) or np.any(p_init < 0) or np.any(p_init > 1):
        raise ParameterError(f"Invalid initial state distributions: p_init={p_init}")

    shape_prefix = list(prob.shape[:-2])
    states = np.empty(shape_prefix + [n_states, n_steps], dtype=np.uint16)
    logp = np.empty(shape_prefix + [n_states])

    prob_binary = np.empty(shape_prefix + [2, n_steps])
    p_state_binary = np.empty(2)
    p_init_binary = np.empty(2)

    for state in range(n_states):
        prob_binary[..., 0, :] = 1 - prob[..., state, :]
        prob_binary[..., 1, :] = prob[..., state, :]

        p_state_binary[0] = 1 - p_state[state]
        p_state_binary[1] = p_state[state]

        p_init_binary[0] = 1 - p_init[state]
        p_init_binary[1] = p_init[state]

        states[..., state, :], logp[..., state] = viterbi_discriminative(
            prob_binary,
            transition[state],
            p_state=p_state_binary,
            p_init=p_init_binary,
            return_logp=True,
        )

    if return_logp:
        return states, logp

    return states


def transition_uniform(n_states: int) -> np.ndarray:
    """Construct a uniform transition matrix over ``n_states``.

    Parameters
    ----------
    n_states : int > 0
        The number of states

    Returns
    -------
    transition : np.ndarray [shape=(n_states, n_states)]
        ``transition[i, j] = 1./n_states``

    Examples
    --------
    >>> librosa.sequence.transition_uniform(3)
    array([[0.333, 0.333, 0.333],
           [0.333, 0.333, 0.333],
           [0.333, 0.333, 0.333]])
    """

    if not is_positive_int(n_states):
        raise ParameterError(f"n_states={n_states} must be a positive integer")

    transition = np.empty((n_states, n_states), dtype=np.float64)
    transition.fill(1.0 / n_states)
    return transition


def transition_loop(n_states: int, prob: Union[float, Iterable[float]]) -> np.ndarray:
    """Construct a self-loop transition matrix over ``n_states``.

    The transition matrix will have the following properties:

        - ``transition[i, i] = p`` for all ``i``
        - ``transition[i, j] = (1 - p) / (n_states - 1)`` for all ``j != i``

    This type of transition matrix is appropriate when states tend to be
    locally stable, and there is no additional structure between different
    states.  This is primarily useful for de-noising frame-wise predictions.

    Parameters
    ----------
    n_states : int > 1
        The number of states

    prob : float in [0, 1] or iterable, length=n_states
        If a scalar, this is the probability of a self-transition.

        If a vector of length ``n_states``, ``p[i]`` is the probability of self-transition in state ``i``

    Returns
    -------
    transition : np.ndarray [shape=(n_states, n_states)]
        The transition matrix

    Examples
    --------
    >>> librosa.sequence.transition_loop(3, 0.5)
    array([[0.5 , 0.25, 0.25],
           [0.25, 0.5 , 0.25],
           [0.25, 0.25, 0.5 ]])

    >>> librosa.sequence.transition_loop(3, [0.8, 0.5, 0.25])
    array([[0.8  , 0.1  , 0.1  ],
           [0.25 , 0.5  , 0.25 ],
           [0.375, 0.375, 0.25 ]])
    """

    if not (is_positive_int(n_states) and (n_states > 1)):
        raise ParameterError(f"n_states={n_states} must be a positive integer > 1")

    transition = np.empty((n_states, n_states), dtype=np.float64)

    # if it's a float, make it a vector
    prob = np.asarray(prob, dtype=np.float64)

    if prob.ndim == 0:
        prob = np.tile(prob, n_states)

    if prob.shape != (n_states,):
        raise ParameterError(
            f"prob={prob} must have length equal to n_states={n_states}"
        )

    if np.any(prob < 0) or np.any(prob > 1):
        raise ParameterError(f"prob={prob} must have values in the range [0, 1]")

    for i, prob_i in enumerate(prob):
        transition[i] = (1.0 - prob_i) / (n_states - 1)
        transition[i, i] = prob_i

    return transition


def transition_cycle(n_states: int, prob: Union[float, Iterable[float]]) -> np.ndarray:
    """Construct a cyclic transition matrix over ``n_states``.

    The transition matrix will have the following properties:

        - ``transition[i, i] = p``
        - ``transition[i, i + 1] = (1 - p)``

    This type of transition matrix is appropriate for state spaces
    with cyclical structure, such as metrical position within a bar.
    For example, a song in 4/4 time has state transitions of the form

        1->{1, 2}, 2->{2, 3}, 3->{3, 4}, 4->{4, 1}.

    Parameters
    ----------
    n_states : int > 1
        The number of states

    prob : float in [0, 1] or iterable, length=n_states
        If a scalar, this is the probability of a self-transition.

        If a vector of length ``n_states``, ``p[i]`` is the probability of
        self-transition in state ``i``

    Returns
    -------
    transition : np.ndarray [shape=(n_states, n_states)]
        The transition matrix

    Examples
    --------
    >>> librosa.sequence.transition_cycle(4, 0.9)
    array([[0.9, 0.1, 0. , 0. ],
           [0. , 0.9, 0.1, 0. ],
           [0. , 0. , 0.9, 0.1],
           [0.1, 0. , 0. , 0.9]])
    """

    if not (is_positive_int(n_states) and n_states > 1):
        raise ParameterError(f"n_states={n_states} must be a positive integer > 1")

    transition = np.zeros((n_states, n_states), dtype=np.float64)

    # if it's a float, make it a vector
    prob = np.asarray(prob, dtype=np.float64)

    if prob.ndim == 0:
        prob = np.tile(prob, n_states)

    if prob.shape != (n_states,):
        raise ParameterError(
            f"prob={prob} must have length equal to n_states={n_states}"
        )

    if np.any(prob < 0) or np.any(prob > 1):
        raise ParameterError(f"prob={prob} must have values in the range [0, 1]")

    for i, prob_i in enumerate(prob):
        transition[i, np.mod(i + 1, n_states)] = 1.0 - prob_i
        transition[i, i] = prob_i

    return transition


def transition_local(
    n_states: int,
    width: Union[int, Iterable[int]],
    *,
    window: _WindowSpec = "triangle",
    wrap: bool = False,
) -> np.ndarray:
    """Construct a localized transition matrix.

    The transition matrix will have the following properties:

        - ``transition[i, j] = 0`` if ``|i - j| > width``
        - ``transition[i, i]`` is maximal
        - ``transition[i, i - width//2 : i + width//2]`` has shape ``window``

    This type of transition matrix is appropriate for state spaces
    that discretely approximate continuous variables, such as in fundamental
    frequency estimation.

    Parameters
    ----------
    n_states : int > 1
        The number of states

    width : int >= 1 or iterable
        The maximum number of states to treat as "local".
        If iterable, it should have length equal to ``n_states``,
        and specify the width independently for each state.

    window : str, callable, or window specification
        The window function to determine the shape of the "local" distribution.

        Any window specification supported by `filters.get_window` will work here.

        .. note:: Certain windows (e.g., 'hann') are identically 0 at the boundaries,
            so and effectively have ``width-2`` non-zero values.  You may have to expand
            ``width`` to get the desired behavior.

    wrap : bool
        If ``True``, then state locality ``|i - j|`` is computed modulo ``n_states``.
        If ``False`` (default), then locality is absolute.

    See Also
    --------
    librosa.filters.get_window

    Returns
    -------
    transition : np.ndarray [shape=(n_states, n_states)]
        The transition matrix

    Examples
    --------
    Triangular distributions with and without wrapping

    >>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=False)
    array([[0.667, 0.333, 0.   , 0.   , 0.   ],
           [0.25 , 0.5  , 0.25 , 0.   , 0.   ],
           [0.   , 0.25 , 0.5  , 0.25 , 0.   ],
           [0.   , 0.   , 0.25 , 0.5  , 0.25 ],
           [0.   , 0.   , 0.   , 0.333, 0.667]])

    >>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=True)
    array([[0.5 , 0.25, 0.  , 0.  , 0.25],
           [0.25, 0.5 , 0.25, 0.  , 0.  ],
           [0.  , 0.25, 0.5 , 0.25, 0.  ],
           [0.  , 0.  , 0.25, 0.5 , 0.25],
           [0.25, 0.  , 0.  , 0.25, 0.5 ]])

    Uniform local distributions with variable widths and no wrapping

    >>> librosa.sequence.transition_local(5, [1, 2, 3, 3, 1], window='ones', wrap=False)
    array([[1.   , 0.   , 0.   , 0.   , 0.   ],
           [0.5  , 0.5  , 0.   , 0.   , 0.   ],
           [0.   , 0.333, 0.333, 0.333, 0.   ],
           [0.   , 0.   , 0.333, 0.333, 0.333],
           [0.   , 0.   , 0.   , 0.   , 1.   ]])
    """

    if not (is_positive_int(n_states) and n_states > 1):
        raise ParameterError(f"n_states={n_states} must be a positive integer > 1")

    width = np.asarray(width, dtype=int)
    if width.ndim == 0:
        width = np.tile(width, n_states)

    if width.shape != (n_states,):
        raise ParameterError(
            f"width={width} must have length equal to n_states={n_states}"
        )

    if np.any(width < 1):
        raise ParameterError(f"width={width} must be at least 1")

    transition = np.zeros((n_states, n_states), dtype=np.float64)

    # Fill in the widths.  This is inefficient, but simple
    for i, width_i in enumerate(width):
        trans_row = pad_center(
            get_window(window, width_i, fftbins=False), size=n_states
        )
        trans_row = np.roll(trans_row, n_states // 2 + i + 1)

        if not wrap:
            # Knock out the off-diagonal-band elements
            trans_row[min(n_states, i + width_i // 2 + 1) :] = 0
            trans_row[: max(0, i - width_i // 2)] = 0

        transition[i] = trans_row

    # Row-normalize
    transition /= transition.sum(axis=1, keepdims=True)

    return transition