Spaces:
Configuration error
Configuration error
fixed environment issues
Browse files- Dockerfile +4 -0
- constantq.py +1497 -0
- filters.py +1661 -0
- sequence.py +2059 -0
- utils.py +316 -0
Dockerfile
CHANGED
@@ -26,6 +26,10 @@ COPY . /app/
|
|
26 |
# Replace the librosa notation.py with notation.py from your project
|
27 |
COPY notation.py /usr/local/lib/python3.10/site-packages/librosa/core/notation.py
|
28 |
COPY audio.py /usr/local/lib/python3.10/site-packages/librosa/core/audio.py
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# RUN cd /tmp && mkdir cache1
|
31 |
|
|
|
26 |
# Replace the librosa notation.py with notation.py from your project
|
27 |
COPY notation.py /usr/local/lib/python3.10/site-packages/librosa/core/notation.py
|
28 |
COPY audio.py /usr/local/lib/python3.10/site-packages/librosa/core/audio.py
|
29 |
+
COPY constantq.py /usr/local/lib/python3.10/site-packages/librosa/core/constantq.py
|
30 |
+
COPY filters.py /usr/local/lib/python3.10/site-packages/librosa/filters.py
|
31 |
+
COPY sequence.py /usr/local/lib/python3.10/site-packages/librosa/sequence.py
|
32 |
+
COPY utils.py /usr/local/lib/python3.10/site-packages/librosa/feature/utils.py
|
33 |
|
34 |
# RUN cd /tmp && mkdir cache1
|
35 |
|
constantq.py
ADDED
@@ -0,0 +1,1497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
#!/usr/bin/env python
|
5 |
+
# -*- coding: utf-8 -*-
|
6 |
+
"""Constant-Q transforms"""
|
7 |
+
import warnings
|
8 |
+
import numpy as np
|
9 |
+
from numba import jit
|
10 |
+
|
11 |
+
from . import audio
|
12 |
+
from .intervals import interval_frequencies
|
13 |
+
from .fft import get_fftlib
|
14 |
+
from .convert import cqt_frequencies, note_to_hz
|
15 |
+
from .spectrum import stft, istft
|
16 |
+
from .pitch import estimate_tuning
|
17 |
+
from .._cache import cache
|
18 |
+
from .. import filters
|
19 |
+
from .. import util
|
20 |
+
from ..util.exceptions import ParameterError
|
21 |
+
from numpy.typing import DTypeLike
|
22 |
+
from typing import Optional, Union, Collection, List
|
23 |
+
from .._typing import _WindowSpec, _PadMode, _FloatLike_co, _ensure_not_reachable
|
24 |
+
|
25 |
+
__all__ = ["cqt", "hybrid_cqt", "pseudo_cqt", "icqt", "griffinlim_cqt", "vqt"]
|
26 |
+
|
27 |
+
# TODO: ivqt, griffinlim_vqt
|
28 |
+
|
29 |
+
|
30 |
+
@cache(level=20)
|
31 |
+
def cqt(
|
32 |
+
y: np.ndarray,
|
33 |
+
*,
|
34 |
+
sr: float = 22050,
|
35 |
+
hop_length: int = 512,
|
36 |
+
fmin: Optional[_FloatLike_co] = None,
|
37 |
+
n_bins: int = 84,
|
38 |
+
bins_per_octave: int = 12,
|
39 |
+
tuning: Optional[float] = 0.0,
|
40 |
+
filter_scale: float = 1,
|
41 |
+
norm: Optional[float] = 1,
|
42 |
+
sparsity: float = 0.01,
|
43 |
+
window: _WindowSpec = "hann",
|
44 |
+
scale: bool = True,
|
45 |
+
pad_mode: _PadMode = "constant",
|
46 |
+
res_type: Optional[str] = "soxr_hq",
|
47 |
+
dtype: Optional[DTypeLike] = None,
|
48 |
+
) -> np.ndarray:
|
49 |
+
"""Compute the constant-Q transform of an audio signal.
|
50 |
+
|
51 |
+
This implementation is based on the recursive sub-sampling method
|
52 |
+
described by [#]_.
|
53 |
+
|
54 |
+
.. [#] Schoerkhuber, Christian, and Anssi Klapuri.
|
55 |
+
"Constant-Q transform toolbox for music processing."
|
56 |
+
7th Sound and Music Computing Conference, Barcelona, Spain. 2010.
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
----------
|
60 |
+
y : np.ndarray [shape=(..., n)]
|
61 |
+
audio time series. Multi-channel is supported.
|
62 |
+
|
63 |
+
sr : number > 0 [scalar]
|
64 |
+
sampling rate of ``y``
|
65 |
+
|
66 |
+
hop_length : int > 0 [scalar]
|
67 |
+
number of samples between successive CQT columns.
|
68 |
+
|
69 |
+
fmin : float > 0 [scalar]
|
70 |
+
Minimum frequency. Defaults to `C1 ~= 32.70 Hz`
|
71 |
+
|
72 |
+
n_bins : int > 0 [scalar]
|
73 |
+
Number of frequency bins, starting at ``fmin``
|
74 |
+
|
75 |
+
bins_per_octave : int > 0 [scalar]
|
76 |
+
Number of bins per octave
|
77 |
+
|
78 |
+
tuning : None or float
|
79 |
+
Tuning offset in fractions of a bin.
|
80 |
+
|
81 |
+
If ``None``, tuning will be automatically estimated from the signal.
|
82 |
+
|
83 |
+
The minimum frequency of the resulting CQT will be modified to
|
84 |
+
``fmin * 2**(tuning / bins_per_octave)``.
|
85 |
+
|
86 |
+
filter_scale : float > 0
|
87 |
+
Filter scale factor. Small values (<1) use shorter windows
|
88 |
+
for improved time resolution.
|
89 |
+
|
90 |
+
norm : {inf, -inf, 0, float > 0}
|
91 |
+
Type of norm to use for basis function normalization.
|
92 |
+
See `librosa.util.normalize`.
|
93 |
+
|
94 |
+
sparsity : float in [0, 1)
|
95 |
+
Sparsify the CQT basis by discarding up to ``sparsity``
|
96 |
+
fraction of the energy in each basis.
|
97 |
+
|
98 |
+
Set ``sparsity=0`` to disable sparsification.
|
99 |
+
|
100 |
+
window : str, tuple, number, or function
|
101 |
+
Window specification for the basis filters.
|
102 |
+
See `filters.get_window` for details.
|
103 |
+
|
104 |
+
scale : bool
|
105 |
+
If ``True``, scale the CQT response by square-root the length of
|
106 |
+
each channel's filter. This is analogous to ``norm='ortho'`` in FFT.
|
107 |
+
|
108 |
+
If ``False``, do not scale the CQT. This is analogous to
|
109 |
+
``norm=None`` in FFT.
|
110 |
+
|
111 |
+
pad_mode : string
|
112 |
+
Padding mode for centered frame analysis.
|
113 |
+
|
114 |
+
See also: `librosa.stft` and `numpy.pad`.
|
115 |
+
|
116 |
+
res_type : string
|
117 |
+
The resampling mode for recursive downsampling.
|
118 |
+
|
119 |
+
dtype : np.dtype
|
120 |
+
The (complex) data type of the output array. By default, this is inferred to match
|
121 |
+
the numerical precision of the input signal.
|
122 |
+
|
123 |
+
Returns
|
124 |
+
-------
|
125 |
+
CQT : np.ndarray [shape=(..., n_bins, t)]
|
126 |
+
Constant-Q value each frequency at each time.
|
127 |
+
|
128 |
+
See Also
|
129 |
+
--------
|
130 |
+
vqt
|
131 |
+
librosa.resample
|
132 |
+
librosa.util.normalize
|
133 |
+
|
134 |
+
Notes
|
135 |
+
-----
|
136 |
+
This function caches at level 20.
|
137 |
+
|
138 |
+
Examples
|
139 |
+
--------
|
140 |
+
Generate and plot a constant-Q power spectrum
|
141 |
+
|
142 |
+
>>> import matplotlib.pyplot as plt
|
143 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
144 |
+
>>> C = np.abs(librosa.cqt(y, sr=sr))
|
145 |
+
>>> fig, ax = plt.subplots()
|
146 |
+
>>> img = librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max),
|
147 |
+
... sr=sr, x_axis='time', y_axis='cqt_note', ax=ax)
|
148 |
+
>>> ax.set_title('Constant-Q power spectrum')
|
149 |
+
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB")
|
150 |
+
|
151 |
+
Limit the frequency range
|
152 |
+
|
153 |
+
>>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'),
|
154 |
+
... n_bins=60))
|
155 |
+
>>> C
|
156 |
+
array([[6.830e-04, 6.361e-04, ..., 7.362e-09, 9.102e-09],
|
157 |
+
[5.366e-04, 4.818e-04, ..., 8.953e-09, 1.067e-08],
|
158 |
+
...,
|
159 |
+
[4.288e-02, 4.580e-01, ..., 1.529e-05, 5.572e-06],
|
160 |
+
[2.965e-03, 1.508e-01, ..., 8.965e-06, 1.455e-05]])
|
161 |
+
|
162 |
+
Using a higher frequency resolution
|
163 |
+
|
164 |
+
>>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'),
|
165 |
+
... n_bins=60 * 2, bins_per_octave=12 * 2))
|
166 |
+
>>> C
|
167 |
+
array([[5.468e-04, 5.382e-04, ..., 5.911e-09, 6.105e-09],
|
168 |
+
[4.118e-04, 4.014e-04, ..., 7.788e-09, 8.160e-09],
|
169 |
+
...,
|
170 |
+
[2.780e-03, 1.424e-01, ..., 4.225e-06, 2.388e-05],
|
171 |
+
[5.147e-02, 6.959e-02, ..., 1.694e-05, 5.811e-06]])
|
172 |
+
"""
|
173 |
+
|
174 |
+
# CQT is the special case of VQT with gamma=0
|
175 |
+
return vqt(
|
176 |
+
y=y,
|
177 |
+
sr=sr,
|
178 |
+
hop_length=hop_length,
|
179 |
+
fmin=fmin,
|
180 |
+
n_bins=n_bins,
|
181 |
+
intervals="equal",
|
182 |
+
gamma=0,
|
183 |
+
bins_per_octave=bins_per_octave,
|
184 |
+
tuning=tuning,
|
185 |
+
filter_scale=filter_scale,
|
186 |
+
norm=norm,
|
187 |
+
sparsity=sparsity,
|
188 |
+
window=window,
|
189 |
+
scale=scale,
|
190 |
+
pad_mode=pad_mode,
|
191 |
+
res_type=res_type,
|
192 |
+
dtype=dtype,
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
@cache(level=20)
|
197 |
+
def hybrid_cqt(
|
198 |
+
y: np.ndarray,
|
199 |
+
*,
|
200 |
+
sr: float = 22050,
|
201 |
+
hop_length: int = 512,
|
202 |
+
fmin: Optional[_FloatLike_co] = None,
|
203 |
+
n_bins: int = 84,
|
204 |
+
bins_per_octave: int = 12,
|
205 |
+
tuning: Optional[float] = 0.0,
|
206 |
+
filter_scale: float = 1,
|
207 |
+
norm: Optional[float] = 1,
|
208 |
+
sparsity: float = 0.01,
|
209 |
+
window: _WindowSpec = "hann",
|
210 |
+
scale: bool = True,
|
211 |
+
pad_mode: _PadMode = "constant",
|
212 |
+
res_type: str = "soxr_hq",
|
213 |
+
dtype: Optional[DTypeLike] = None,
|
214 |
+
) -> np.ndarray:
|
215 |
+
"""Compute the hybrid constant-Q transform of an audio signal.
|
216 |
+
|
217 |
+
Here, the hybrid CQT uses the pseudo CQT for higher frequencies where
|
218 |
+
the hop_length is longer than half the filter length and the full CQT
|
219 |
+
for lower frequencies.
|
220 |
+
|
221 |
+
Parameters
|
222 |
+
----------
|
223 |
+
y : np.ndarray [shape=(..., n)]
|
224 |
+
audio time series. Multi-channel is supported.
|
225 |
+
|
226 |
+
sr : number > 0 [scalar]
|
227 |
+
sampling rate of ``y``
|
228 |
+
|
229 |
+
hop_length : int > 0 [scalar]
|
230 |
+
number of samples between successive CQT columns.
|
231 |
+
|
232 |
+
fmin : float > 0 [scalar]
|
233 |
+
Minimum frequency. Defaults to `C1 ~= 32.70 Hz`
|
234 |
+
|
235 |
+
n_bins : int > 0 [scalar]
|
236 |
+
Number of frequency bins, starting at ``fmin``
|
237 |
+
|
238 |
+
bins_per_octave : int > 0 [scalar]
|
239 |
+
Number of bins per octave
|
240 |
+
|
241 |
+
tuning : None or float
|
242 |
+
Tuning offset in fractions of a bin.
|
243 |
+
|
244 |
+
If ``None``, tuning will be automatically estimated from the signal.
|
245 |
+
|
246 |
+
The minimum frequency of the resulting CQT will be modified to
|
247 |
+
``fmin * 2**(tuning / bins_per_octave)``.
|
248 |
+
|
249 |
+
filter_scale : float > 0
|
250 |
+
Filter filter_scale factor. Larger values use longer windows.
|
251 |
+
|
252 |
+
norm : {inf, -inf, 0, float > 0}
|
253 |
+
Type of norm to use for basis function normalization.
|
254 |
+
See `librosa.util.normalize`.
|
255 |
+
|
256 |
+
sparsity : float in [0, 1)
|
257 |
+
Sparsify the CQT basis by discarding up to ``sparsity``
|
258 |
+
fraction of the energy in each basis.
|
259 |
+
|
260 |
+
Set ``sparsity=0`` to disable sparsification.
|
261 |
+
|
262 |
+
window : str, tuple, number, or function
|
263 |
+
Window specification for the basis filters.
|
264 |
+
See `filters.get_window` for details.
|
265 |
+
|
266 |
+
scale : bool
|
267 |
+
If ``True``, scale the CQT response by square-root the length of
|
268 |
+
each channel's filter. This is analogous to ``norm='ortho'`` in FFT.
|
269 |
+
|
270 |
+
If ``False``, do not scale the CQT. This is analogous to
|
271 |
+
``norm=None`` in FFT.
|
272 |
+
|
273 |
+
pad_mode : string
|
274 |
+
Padding mode for centered frame analysis.
|
275 |
+
|
276 |
+
See also: `librosa.stft` and `numpy.pad`.
|
277 |
+
|
278 |
+
res_type : string
|
279 |
+
Resampling mode. See `librosa.cqt` for details.
|
280 |
+
|
281 |
+
dtype : np.dtype, optional
|
282 |
+
The complex dtype to use for computing the CQT.
|
283 |
+
By default, this is inferred to match the precision of
|
284 |
+
the input signal.
|
285 |
+
|
286 |
+
Returns
|
287 |
+
-------
|
288 |
+
CQT : np.ndarray [shape=(..., n_bins, t), dtype=np.float]
|
289 |
+
Constant-Q energy for each frequency at each time.
|
290 |
+
|
291 |
+
See Also
|
292 |
+
--------
|
293 |
+
cqt
|
294 |
+
pseudo_cqt
|
295 |
+
|
296 |
+
Notes
|
297 |
+
-----
|
298 |
+
This function caches at level 20.
|
299 |
+
|
300 |
+
"""
|
301 |
+
|
302 |
+
if fmin is None:
|
303 |
+
# C1 by default
|
304 |
+
fmin = note_to_hz("C1")
|
305 |
+
|
306 |
+
if tuning is None:
|
307 |
+
tuning = estimate_tuning(y=y, sr=sr, bins_per_octave=bins_per_octave)
|
308 |
+
|
309 |
+
# Apply tuning correction
|
310 |
+
fmin = fmin * 2.0 ** (tuning / bins_per_octave)
|
311 |
+
|
312 |
+
# Get all CQT frequencies
|
313 |
+
freqs = cqt_frequencies(n_bins, fmin=fmin, bins_per_octave=bins_per_octave)
|
314 |
+
|
315 |
+
# Compute an alpha parameter, just in case we need it
|
316 |
+
alpha = __bpo_to_alpha(bins_per_octave)
|
317 |
+
|
318 |
+
# Compute the length of each constant-Q basis function
|
319 |
+
lengths, _ = filters.wavelet_lengths(
|
320 |
+
freqs=freqs, sr=sr, filter_scale=filter_scale, window=window, alpha=alpha
|
321 |
+
)
|
322 |
+
|
323 |
+
# Determine which filters to use with Pseudo CQT
|
324 |
+
# These are the ones that fit within 2 hop lengths after padding
|
325 |
+
pseudo_filters = 2.0 ** np.ceil(np.log2(lengths)) < 2 * hop_length
|
326 |
+
|
327 |
+
n_bins_pseudo = int(np.sum(pseudo_filters))
|
328 |
+
|
329 |
+
n_bins_full = n_bins - n_bins_pseudo
|
330 |
+
cqt_resp = []
|
331 |
+
|
332 |
+
if n_bins_pseudo > 0:
|
333 |
+
fmin_pseudo = np.min(freqs[pseudo_filters])
|
334 |
+
|
335 |
+
cqt_resp.append(
|
336 |
+
pseudo_cqt(
|
337 |
+
y,
|
338 |
+
sr=sr,
|
339 |
+
hop_length=hop_length,
|
340 |
+
fmin=fmin_pseudo,
|
341 |
+
n_bins=n_bins_pseudo,
|
342 |
+
bins_per_octave=bins_per_octave,
|
343 |
+
filter_scale=filter_scale,
|
344 |
+
norm=norm,
|
345 |
+
sparsity=sparsity,
|
346 |
+
window=window,
|
347 |
+
scale=scale,
|
348 |
+
pad_mode=pad_mode,
|
349 |
+
dtype=dtype,
|
350 |
+
)
|
351 |
+
)
|
352 |
+
|
353 |
+
if n_bins_full > 0:
|
354 |
+
cqt_resp.append(
|
355 |
+
np.abs(
|
356 |
+
cqt(
|
357 |
+
y,
|
358 |
+
sr=sr,
|
359 |
+
hop_length=hop_length,
|
360 |
+
fmin=fmin,
|
361 |
+
n_bins=n_bins_full,
|
362 |
+
bins_per_octave=bins_per_octave,
|
363 |
+
filter_scale=filter_scale,
|
364 |
+
norm=norm,
|
365 |
+
sparsity=sparsity,
|
366 |
+
window=window,
|
367 |
+
scale=scale,
|
368 |
+
pad_mode=pad_mode,
|
369 |
+
res_type=res_type,
|
370 |
+
dtype=dtype,
|
371 |
+
)
|
372 |
+
)
|
373 |
+
)
|
374 |
+
|
375 |
+
# Propagate dtype from the last component
|
376 |
+
return __trim_stack(cqt_resp, n_bins, cqt_resp[-1].dtype)
|
377 |
+
|
378 |
+
|
379 |
+
@cache(level=20)
|
380 |
+
def pseudo_cqt(
|
381 |
+
y: np.ndarray,
|
382 |
+
*,
|
383 |
+
sr: float = 22050,
|
384 |
+
hop_length: int = 512,
|
385 |
+
fmin: Optional[_FloatLike_co] = None,
|
386 |
+
n_bins: int = 84,
|
387 |
+
bins_per_octave: int = 12,
|
388 |
+
tuning: Optional[float] = 0.0,
|
389 |
+
filter_scale: float = 1,
|
390 |
+
norm: Optional[float] = 1,
|
391 |
+
sparsity: float = 0.01,
|
392 |
+
window: _WindowSpec = "hann",
|
393 |
+
scale: bool = True,
|
394 |
+
pad_mode: _PadMode = "constant",
|
395 |
+
dtype: Optional[DTypeLike] = None,
|
396 |
+
) -> np.ndarray:
|
397 |
+
"""Compute the pseudo constant-Q transform of an audio signal.
|
398 |
+
|
399 |
+
This uses a single fft size that is the smallest power of 2 that is greater
|
400 |
+
than or equal to the max of:
|
401 |
+
|
402 |
+
1. The longest CQT filter
|
403 |
+
2. 2x the hop_length
|
404 |
+
|
405 |
+
Parameters
|
406 |
+
----------
|
407 |
+
y : np.ndarray [shape=(..., n)]
|
408 |
+
audio time series. Multi-channel is supported.
|
409 |
+
|
410 |
+
sr : number > 0 [scalar]
|
411 |
+
sampling rate of ``y``
|
412 |
+
|
413 |
+
hop_length : int > 0 [scalar]
|
414 |
+
number of samples between successive CQT columns.
|
415 |
+
|
416 |
+
fmin : float > 0 [scalar]
|
417 |
+
Minimum frequency. Defaults to `C1 ~= 32.70 Hz`
|
418 |
+
|
419 |
+
n_bins : int > 0 [scalar]
|
420 |
+
Number of frequency bins, starting at ``fmin``
|
421 |
+
|
422 |
+
bins_per_octave : int > 0 [scalar]
|
423 |
+
Number of bins per octave
|
424 |
+
|
425 |
+
tuning : None or float
|
426 |
+
Tuning offset in fractions of a bin.
|
427 |
+
|
428 |
+
If ``None``, tuning will be automatically estimated from the signal.
|
429 |
+
|
430 |
+
The minimum frequency of the resulting CQT will be modified to
|
431 |
+
``fmin * 2**(tuning / bins_per_octave)``.
|
432 |
+
|
433 |
+
filter_scale : float > 0
|
434 |
+
Filter filter_scale factor. Larger values use longer windows.
|
435 |
+
|
436 |
+
norm : {inf, -inf, 0, float > 0}
|
437 |
+
Type of norm to use for basis function normalization.
|
438 |
+
See `librosa.util.normalize`.
|
439 |
+
|
440 |
+
sparsity : float in [0, 1)
|
441 |
+
Sparsify the CQT basis by discarding up to ``sparsity``
|
442 |
+
fraction of the energy in each basis.
|
443 |
+
|
444 |
+
Set ``sparsity=0`` to disable sparsification.
|
445 |
+
|
446 |
+
window : str, tuple, number, or function
|
447 |
+
Window specification for the basis filters.
|
448 |
+
See `filters.get_window` for details.
|
449 |
+
|
450 |
+
scale : bool
|
451 |
+
If ``True``, scale the CQT response by square-root the length of
|
452 |
+
each channel's filter. This is analogous to ``norm='ortho'`` in FFT.
|
453 |
+
|
454 |
+
If ``False``, do not scale the CQT. This is analogous to
|
455 |
+
``norm=None`` in FFT.
|
456 |
+
|
457 |
+
pad_mode : string
|
458 |
+
Padding mode for centered frame analysis.
|
459 |
+
|
460 |
+
See also: `librosa.stft` and `numpy.pad`.
|
461 |
+
|
462 |
+
dtype : np.dtype, optional
|
463 |
+
The complex data type for CQT calculations.
|
464 |
+
By default, this is inferred to match the precision of the input signal.
|
465 |
+
|
466 |
+
Returns
|
467 |
+
-------
|
468 |
+
CQT : np.ndarray [shape=(..., n_bins, t), dtype=np.float]
|
469 |
+
Pseudo Constant-Q energy for each frequency at each time.
|
470 |
+
|
471 |
+
Notes
|
472 |
+
-----
|
473 |
+
This function caches at level 20.
|
474 |
+
|
475 |
+
"""
|
476 |
+
|
477 |
+
if fmin is None:
|
478 |
+
# C1 by default
|
479 |
+
fmin = note_to_hz("C1")
|
480 |
+
|
481 |
+
if tuning is None:
|
482 |
+
tuning = estimate_tuning(y=y, sr=sr, bins_per_octave=bins_per_octave)
|
483 |
+
|
484 |
+
if dtype is None:
|
485 |
+
dtype = util.dtype_r2c(y.dtype)
|
486 |
+
|
487 |
+
# Apply tuning correction
|
488 |
+
fmin = fmin * 2.0 ** (tuning / bins_per_octave)
|
489 |
+
|
490 |
+
freqs = cqt_frequencies(fmin=fmin, n_bins=n_bins, bins_per_octave=bins_per_octave)
|
491 |
+
|
492 |
+
alpha = __bpo_to_alpha(bins_per_octave)
|
493 |
+
|
494 |
+
lengths, _ = filters.wavelet_lengths(
|
495 |
+
freqs=freqs, sr=sr, window=window, filter_scale=filter_scale, alpha=alpha
|
496 |
+
)
|
497 |
+
|
498 |
+
fft_basis, n_fft, _ = __vqt_filter_fft(
|
499 |
+
sr,
|
500 |
+
freqs,
|
501 |
+
filter_scale,
|
502 |
+
norm,
|
503 |
+
sparsity,
|
504 |
+
hop_length=hop_length,
|
505 |
+
window=window,
|
506 |
+
dtype=dtype,
|
507 |
+
alpha=alpha,
|
508 |
+
)
|
509 |
+
|
510 |
+
fft_basis = np.abs(fft_basis)
|
511 |
+
|
512 |
+
# Compute the magnitude-only CQT response
|
513 |
+
C: np.ndarray = __cqt_response(
|
514 |
+
y,
|
515 |
+
n_fft,
|
516 |
+
hop_length,
|
517 |
+
fft_basis,
|
518 |
+
pad_mode,
|
519 |
+
window="hann",
|
520 |
+
dtype=dtype,
|
521 |
+
phase=False,
|
522 |
+
)
|
523 |
+
|
524 |
+
if scale:
|
525 |
+
C /= np.sqrt(n_fft)
|
526 |
+
else:
|
527 |
+
# reshape lengths to match dimension properly
|
528 |
+
lengths = util.expand_to(lengths, ndim=C.ndim, axes=-2)
|
529 |
+
|
530 |
+
C *= np.sqrt(lengths / n_fft)
|
531 |
+
|
532 |
+
return C
|
533 |
+
|
534 |
+
|
535 |
+
@cache(level=40)
|
536 |
+
def icqt(
|
537 |
+
C: np.ndarray,
|
538 |
+
*,
|
539 |
+
sr: float = 22050,
|
540 |
+
hop_length: int = 512,
|
541 |
+
fmin: Optional[_FloatLike_co] = None,
|
542 |
+
bins_per_octave: int = 12,
|
543 |
+
tuning: float = 0.0,
|
544 |
+
filter_scale: float = 1,
|
545 |
+
norm: Optional[float] = 1,
|
546 |
+
sparsity: float = 0.01,
|
547 |
+
window: _WindowSpec = "hann",
|
548 |
+
scale: bool = True,
|
549 |
+
length: Optional[int] = None,
|
550 |
+
res_type: str = "soxr_hq",
|
551 |
+
dtype: Optional[DTypeLike] = None,
|
552 |
+
) -> np.ndarray:
|
553 |
+
"""Compute the inverse constant-Q transform.
|
554 |
+
|
555 |
+
Given a constant-Q transform representation ``C`` of an audio signal ``y``,
|
556 |
+
this function produces an approximation ``y_hat``.
|
557 |
+
|
558 |
+
Parameters
|
559 |
+
----------
|
560 |
+
C : np.ndarray, [shape=(..., n_bins, n_frames)]
|
561 |
+
Constant-Q representation as produced by `cqt`
|
562 |
+
|
563 |
+
sr : number > 0 [scalar]
|
564 |
+
sampling rate of the signal
|
565 |
+
|
566 |
+
hop_length : int > 0 [scalar]
|
567 |
+
number of samples between successive frames
|
568 |
+
|
569 |
+
fmin : float > 0 [scalar]
|
570 |
+
Minimum frequency. Defaults to `C1 ~= 32.70 Hz`
|
571 |
+
|
572 |
+
bins_per_octave : int > 0 [scalar]
|
573 |
+
Number of bins per octave
|
574 |
+
|
575 |
+
tuning : float [scalar]
|
576 |
+
Tuning offset in fractions of a bin.
|
577 |
+
|
578 |
+
The minimum frequency of the CQT will be modified to
|
579 |
+
``fmin * 2**(tuning / bins_per_octave)``.
|
580 |
+
|
581 |
+
filter_scale : float > 0 [scalar]
|
582 |
+
Filter scale factor. Small values (<1) use shorter windows
|
583 |
+
for improved time resolution.
|
584 |
+
|
585 |
+
norm : {inf, -inf, 0, float > 0}
|
586 |
+
Type of norm to use for basis function normalization.
|
587 |
+
See `librosa.util.normalize`.
|
588 |
+
|
589 |
+
sparsity : float in [0, 1)
|
590 |
+
Sparsify the CQT basis by discarding up to ``sparsity``
|
591 |
+
fraction of the energy in each basis.
|
592 |
+
|
593 |
+
Set ``sparsity=0`` to disable sparsification.
|
594 |
+
|
595 |
+
window : str, tuple, number, or function
|
596 |
+
Window specification for the basis filters.
|
597 |
+
See `filters.get_window` for details.
|
598 |
+
|
599 |
+
scale : bool
|
600 |
+
If ``True``, scale the CQT response by square-root the length
|
601 |
+
of each channel's filter. This is analogous to ``norm='ortho'`` in FFT.
|
602 |
+
|
603 |
+
If ``False``, do not scale the CQT. This is analogous to ``norm=None``
|
604 |
+
in FFT.
|
605 |
+
|
606 |
+
length : int > 0, optional
|
607 |
+
If provided, the output ``y`` is zero-padded or clipped to exactly
|
608 |
+
``length`` samples.
|
609 |
+
|
610 |
+
res_type : string
|
611 |
+
Resampling mode.
|
612 |
+
See `librosa.resample` for supported modes.
|
613 |
+
|
614 |
+
dtype : numeric type
|
615 |
+
Real numeric type for ``y``. Default is inferred to match the numerical
|
616 |
+
precision of the input CQT.
|
617 |
+
|
618 |
+
Returns
|
619 |
+
-------
|
620 |
+
y : np.ndarray, [shape=(..., n_samples), dtype=np.float]
|
621 |
+
Audio time-series reconstructed from the CQT representation.
|
622 |
+
|
623 |
+
See Also
|
624 |
+
--------
|
625 |
+
cqt
|
626 |
+
librosa.resample
|
627 |
+
|
628 |
+
Notes
|
629 |
+
-----
|
630 |
+
This function caches at level 40.
|
631 |
+
|
632 |
+
Examples
|
633 |
+
--------
|
634 |
+
Using default parameters
|
635 |
+
|
636 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
637 |
+
>>> C = librosa.cqt(y=y, sr=sr)
|
638 |
+
>>> y_hat = librosa.icqt(C=C, sr=sr)
|
639 |
+
|
640 |
+
Or with a different hop length and frequency resolution:
|
641 |
+
|
642 |
+
>>> hop_length = 256
|
643 |
+
>>> bins_per_octave = 12 * 3
|
644 |
+
>>> C = librosa.cqt(y=y, sr=sr, hop_length=256, n_bins=7*bins_per_octave,
|
645 |
+
... bins_per_octave=bins_per_octave)
|
646 |
+
>>> y_hat = librosa.icqt(C=C, sr=sr, hop_length=hop_length,
|
647 |
+
... bins_per_octave=bins_per_octave)
|
648 |
+
"""
|
649 |
+
if fmin is None:
|
650 |
+
fmin = note_to_hz("C1")
|
651 |
+
|
652 |
+
# Apply tuning correction
|
653 |
+
fmin = fmin * 2.0 ** (tuning / bins_per_octave)
|
654 |
+
|
655 |
+
# Get the top octave of frequencies
|
656 |
+
n_bins = C.shape[-2]
|
657 |
+
|
658 |
+
n_octaves = int(np.ceil(float(n_bins) / bins_per_octave))
|
659 |
+
|
660 |
+
# truncate the cqt to max frames if helpful
|
661 |
+
freqs = cqt_frequencies(fmin=fmin, n_bins=n_bins, bins_per_octave=bins_per_octave)
|
662 |
+
alpha = __bpo_to_alpha(bins_per_octave)
|
663 |
+
|
664 |
+
lengths, f_cutoff = filters.wavelet_lengths(
|
665 |
+
freqs=freqs, sr=sr, window=window, filter_scale=filter_scale, alpha=alpha
|
666 |
+
)
|
667 |
+
|
668 |
+
# Trim the CQT to only what's necessary for reconstruction
|
669 |
+
if length is not None:
|
670 |
+
n_frames = int(np.ceil((length + max(lengths)) / hop_length))
|
671 |
+
C = C[..., :n_frames]
|
672 |
+
|
673 |
+
C_scale = np.sqrt(lengths)
|
674 |
+
|
675 |
+
# This shape array will be used for broadcasting the basis scale
|
676 |
+
# we'll have to adapt this per octave within the loop
|
677 |
+
y: Optional[np.ndarray] = None
|
678 |
+
|
679 |
+
# Assume the top octave is at the full rate
|
680 |
+
srs = [sr]
|
681 |
+
hops = [hop_length]
|
682 |
+
|
683 |
+
for i in range(n_octaves - 1):
|
684 |
+
if hops[0] % 2 == 0:
|
685 |
+
# We can downsample:
|
686 |
+
srs.insert(0, srs[0] * 0.5)
|
687 |
+
hops.insert(0, hops[0] // 2)
|
688 |
+
else:
|
689 |
+
# We're out of downsamplings, carry forward
|
690 |
+
srs.insert(0, srs[0])
|
691 |
+
hops.insert(0, hops[0])
|
692 |
+
|
693 |
+
for i, (my_sr, my_hop) in enumerate(zip(srs, hops)):
|
694 |
+
# How many filters are in this octave?
|
695 |
+
n_filters = min(bins_per_octave, n_bins - bins_per_octave * i)
|
696 |
+
|
697 |
+
# Slice out the current octave
|
698 |
+
sl = slice(bins_per_octave * i, bins_per_octave * i + n_filters)
|
699 |
+
|
700 |
+
fft_basis, n_fft, _ = __vqt_filter_fft(
|
701 |
+
my_sr,
|
702 |
+
freqs[sl],
|
703 |
+
filter_scale,
|
704 |
+
norm,
|
705 |
+
sparsity,
|
706 |
+
window=window,
|
707 |
+
dtype=dtype,
|
708 |
+
alpha=alpha,
|
709 |
+
)
|
710 |
+
|
711 |
+
# Transpose the basis
|
712 |
+
inv_basis = fft_basis.H.todense()
|
713 |
+
|
714 |
+
# Compute each filter's frequency-domain power
|
715 |
+
freq_power = 1 / np.sum(util.abs2(np.asarray(inv_basis)), axis=0)
|
716 |
+
|
717 |
+
# Compensate for length normalization in the forward transform
|
718 |
+
freq_power *= n_fft / lengths[sl]
|
719 |
+
|
720 |
+
# Inverse-project the basis for each octave
|
721 |
+
if scale:
|
722 |
+
# scale=True ==> re-scale by sqrt(lengths)
|
723 |
+
D_oct = np.einsum(
|
724 |
+
"fc,c,c,...ct->...ft",
|
725 |
+
inv_basis,
|
726 |
+
C_scale[sl],
|
727 |
+
freq_power,
|
728 |
+
C[..., sl, :],
|
729 |
+
optimize=True,
|
730 |
+
)
|
731 |
+
else:
|
732 |
+
D_oct = np.einsum(
|
733 |
+
"fc,c,...ct->...ft", inv_basis, freq_power, C[..., sl, :], optimize=True
|
734 |
+
)
|
735 |
+
|
736 |
+
y_oct = istft(D_oct, window="ones", hop_length=my_hop, dtype=dtype)
|
737 |
+
|
738 |
+
y_oct = audio.resample(
|
739 |
+
y_oct,
|
740 |
+
orig_sr=1,
|
741 |
+
target_sr=sr // my_sr,
|
742 |
+
res_type=res_type,
|
743 |
+
scale=False,
|
744 |
+
fix=False,
|
745 |
+
)
|
746 |
+
|
747 |
+
if y is None:
|
748 |
+
y = y_oct
|
749 |
+
else:
|
750 |
+
y[..., : y_oct.shape[-1]] += y_oct
|
751 |
+
# make mypy happy
|
752 |
+
assert y is not None
|
753 |
+
|
754 |
+
if length:
|
755 |
+
y = util.fix_length(y, size=length)
|
756 |
+
|
757 |
+
return y
|
758 |
+
|
759 |
+
|
760 |
+
@cache(level=20)
|
761 |
+
def vqt(
|
762 |
+
y: np.ndarray,
|
763 |
+
*,
|
764 |
+
sr: float = 22050,
|
765 |
+
hop_length: int = 512,
|
766 |
+
fmin: Optional[_FloatLike_co] = None,
|
767 |
+
n_bins: int = 84,
|
768 |
+
intervals: Union[str, Collection[float]] = "equal",
|
769 |
+
gamma: Optional[float] = None,
|
770 |
+
bins_per_octave: int = 12,
|
771 |
+
tuning: Optional[float] = 0.0,
|
772 |
+
filter_scale: float = 1,
|
773 |
+
norm: Optional[float] = 1,
|
774 |
+
sparsity: float = 0.01,
|
775 |
+
window: _WindowSpec = "hann",
|
776 |
+
scale: bool = True,
|
777 |
+
pad_mode: _PadMode = "constant",
|
778 |
+
res_type: Optional[str] = "soxr_hq",
|
779 |
+
dtype: Optional[DTypeLike] = None,
|
780 |
+
) -> np.ndarray:
|
781 |
+
"""Compute the variable-Q transform of an audio signal.
|
782 |
+
|
783 |
+
This implementation is based on the recursive sub-sampling method
|
784 |
+
described by [#]_.
|
785 |
+
|
786 |
+
.. [#] Schörkhuber, Christian, Anssi Klapuri, Nicki Holighaus, and Monika Dörfler.
|
787 |
+
"A Matlab toolbox for efficient perfect reconstruction time-frequency
|
788 |
+
transforms with log-frequency resolution."
|
789 |
+
In Audio Engineering Society Conference: 53rd International Conference: Semantic Audio.
|
790 |
+
Audio Engineering Society, 2014.
|
791 |
+
|
792 |
+
Parameters
|
793 |
+
----------
|
794 |
+
y : np.ndarray [shape=(..., n)]
|
795 |
+
audio time series. Multi-channel is supported.
|
796 |
+
|
797 |
+
sr : number > 0 [scalar]
|
798 |
+
sampling rate of ``y``
|
799 |
+
|
800 |
+
hop_length : int > 0 [scalar]
|
801 |
+
number of samples between successive VQT columns.
|
802 |
+
|
803 |
+
fmin : float > 0 [scalar]
|
804 |
+
Minimum frequency. Defaults to `C1 ~= 32.70 Hz`
|
805 |
+
|
806 |
+
n_bins : int > 0 [scalar]
|
807 |
+
Number of frequency bins, starting at ``fmin``
|
808 |
+
|
809 |
+
intervals : str or array of floats in [1, 2)
|
810 |
+
Either a string specification for an interval set, e.g.,
|
811 |
+
`'equal'`, `'pythagorean'`, `'ji3'`, etc. or an array of
|
812 |
+
intervals expressed as numbers between 1 and 2.
|
813 |
+
.. see also:: librosa.interval_frequencies
|
814 |
+
|
815 |
+
gamma : number > 0 [scalar]
|
816 |
+
Bandwidth offset for determining filter lengths.
|
817 |
+
|
818 |
+
If ``gamma=0``, produces the constant-Q transform.
|
819 |
+
|
820 |
+
If 'gamma=None', gamma will be calculated such that filter bandwidths are equal to a
|
821 |
+
constant fraction of the equivalent rectangular bandwidths (ERB). This is accomplished
|
822 |
+
by solving for the gamma which gives::
|
823 |
+
|
824 |
+
B_k = alpha * f_k + gamma = C * ERB(f_k),
|
825 |
+
|
826 |
+
where ``B_k`` is the bandwidth of filter ``k`` with center frequency ``f_k``, alpha
|
827 |
+
is the inverse of what would be the constant Q-factor, and ``C = alpha / 0.108`` is the
|
828 |
+
constant fraction across all filters.
|
829 |
+
|
830 |
+
Here we use ``ERB(f_k) = 24.7 + 0.108 * f_k``, the best-fit curve derived
|
831 |
+
from experimental data in [#]_.
|
832 |
+
|
833 |
+
.. [#] Glasberg, Brian R., and Brian CJ Moore.
|
834 |
+
"Derivation of auditory filter shapes from notched-noise data."
|
835 |
+
Hearing research 47.1-2 (1990): 103-138.
|
836 |
+
|
837 |
+
bins_per_octave : int > 0 [scalar]
|
838 |
+
Number of bins per octave
|
839 |
+
|
840 |
+
tuning : None or float
|
841 |
+
Tuning offset in fractions of a bin.
|
842 |
+
|
843 |
+
If ``None``, tuning will be automatically estimated from the signal.
|
844 |
+
|
845 |
+
The minimum frequency of the resulting VQT will be modified to
|
846 |
+
``fmin * 2**(tuning / bins_per_octave)``.
|
847 |
+
|
848 |
+
filter_scale : float > 0
|
849 |
+
Filter scale factor. Small values (<1) use shorter windows
|
850 |
+
for improved time resolution.
|
851 |
+
|
852 |
+
norm : {inf, -inf, 0, float > 0}
|
853 |
+
Type of norm to use for basis function normalization.
|
854 |
+
See `librosa.util.normalize`.
|
855 |
+
|
856 |
+
sparsity : float in [0, 1)
|
857 |
+
Sparsify the VQT basis by discarding up to ``sparsity``
|
858 |
+
fraction of the energy in each basis.
|
859 |
+
|
860 |
+
Set ``sparsity=0`` to disable sparsification.
|
861 |
+
|
862 |
+
window : str, tuple, number, or function
|
863 |
+
Window specification for the basis filters.
|
864 |
+
See `filters.get_window` for details.
|
865 |
+
|
866 |
+
scale : bool
|
867 |
+
If ``True``, scale the VQT response by square-root the length of
|
868 |
+
each channel's filter. This is analogous to ``norm='ortho'`` in FFT.
|
869 |
+
|
870 |
+
If ``False``, do not scale the VQT. This is analogous to
|
871 |
+
``norm=None`` in FFT.
|
872 |
+
|
873 |
+
pad_mode : string
|
874 |
+
Padding mode for centered frame analysis.
|
875 |
+
|
876 |
+
See also: `librosa.stft` and `numpy.pad`.
|
877 |
+
|
878 |
+
res_type : string
|
879 |
+
The resampling mode for recursive downsampling.
|
880 |
+
|
881 |
+
dtype : np.dtype
|
882 |
+
The dtype of the output array. By default, this is inferred to match the
|
883 |
+
numerical precision of the input signal.
|
884 |
+
|
885 |
+
Returns
|
886 |
+
-------
|
887 |
+
VQT : np.ndarray [shape=(..., n_bins, t), dtype=np.complex]
|
888 |
+
Variable-Q value each frequency at each time.
|
889 |
+
|
890 |
+
See Also
|
891 |
+
--------
|
892 |
+
cqt
|
893 |
+
|
894 |
+
Notes
|
895 |
+
-----
|
896 |
+
This function caches at level 20.
|
897 |
+
|
898 |
+
Examples
|
899 |
+
--------
|
900 |
+
Generate and plot a variable-Q power spectrum
|
901 |
+
|
902 |
+
>>> import matplotlib.pyplot as plt
|
903 |
+
>>> y, sr = librosa.load(librosa.ex('choice'), duration=5)
|
904 |
+
>>> C = np.abs(librosa.cqt(y, sr=sr))
|
905 |
+
>>> V = np.abs(librosa.vqt(y, sr=sr))
|
906 |
+
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
|
907 |
+
>>> librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max),
|
908 |
+
... sr=sr, x_axis='time', y_axis='cqt_note', ax=ax[0])
|
909 |
+
>>> ax[0].set(title='Constant-Q power spectrum', xlabel=None)
|
910 |
+
>>> ax[0].label_outer()
|
911 |
+
>>> img = librosa.display.specshow(librosa.amplitude_to_db(V, ref=np.max),
|
912 |
+
... sr=sr, x_axis='time', y_axis='cqt_note', ax=ax[1])
|
913 |
+
>>> ax[1].set_title('Variable-Q power spectrum')
|
914 |
+
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB")
|
915 |
+
"""
|
916 |
+
|
917 |
+
# If intervals are provided as an array, override BPO
|
918 |
+
if not isinstance(intervals, str):
|
919 |
+
bins_per_octave = len(intervals)
|
920 |
+
|
921 |
+
# How many octaves are we dealing with?
|
922 |
+
n_octaves = int(np.ceil(float(n_bins) / bins_per_octave))
|
923 |
+
n_filters = min(bins_per_octave, n_bins)
|
924 |
+
|
925 |
+
if fmin is None:
|
926 |
+
# C1 by default
|
927 |
+
fmin = note_to_hz("C1")
|
928 |
+
|
929 |
+
if tuning is None:
|
930 |
+
tuning = estimate_tuning(y=y, sr=sr, bins_per_octave=bins_per_octave)
|
931 |
+
|
932 |
+
if dtype is None:
|
933 |
+
dtype = util.dtype_r2c(y.dtype)
|
934 |
+
|
935 |
+
# Apply tuning correction
|
936 |
+
fmin = fmin * 2.0 ** (tuning / bins_per_octave)
|
937 |
+
|
938 |
+
# First thing, get the freqs of the top octave
|
939 |
+
freqs = interval_frequencies(
|
940 |
+
n_bins=n_bins,
|
941 |
+
fmin=fmin,
|
942 |
+
intervals=intervals,
|
943 |
+
bins_per_octave=bins_per_octave,
|
944 |
+
sort=True,
|
945 |
+
)
|
946 |
+
|
947 |
+
freqs_top = freqs[-bins_per_octave:]
|
948 |
+
|
949 |
+
fmax_t: float = np.max(freqs_top)
|
950 |
+
alpha = __bpo_to_alpha(bins_per_octave)
|
951 |
+
|
952 |
+
lengths, filter_cutoff = filters.wavelet_lengths(
|
953 |
+
freqs=freqs,
|
954 |
+
sr=sr,
|
955 |
+
window=window,
|
956 |
+
filter_scale=filter_scale,
|
957 |
+
gamma=gamma,
|
958 |
+
alpha=alpha,
|
959 |
+
)
|
960 |
+
|
961 |
+
# Determine required resampling quality
|
962 |
+
nyquist = sr / 2.0
|
963 |
+
|
964 |
+
if filter_cutoff > nyquist:
|
965 |
+
raise ParameterError(
|
966 |
+
f"Wavelet basis with max frequency={fmax_t} would exceed the Nyquist frequency={nyquist}. "
|
967 |
+
"Try reducing the number of frequency bins."
|
968 |
+
)
|
969 |
+
|
970 |
+
if res_type is None:
|
971 |
+
warnings.warn(
|
972 |
+
"Support for VQT with res_type=None is deprecated in librosa 0.10\n"
|
973 |
+
"and will be removed in version 1.0.",
|
974 |
+
category=FutureWarning,
|
975 |
+
stacklevel=2,
|
976 |
+
)
|
977 |
+
res_type = "soxr_hq"
|
978 |
+
|
979 |
+
y, sr, hop_length = __early_downsample(
|
980 |
+
y, sr, hop_length, res_type, n_octaves, nyquist, filter_cutoff, scale
|
981 |
+
)
|
982 |
+
|
983 |
+
vqt_resp = []
|
984 |
+
|
985 |
+
# Iterate down the octaves
|
986 |
+
my_y, my_sr, my_hop = y, sr, hop_length
|
987 |
+
|
988 |
+
for i in range(n_octaves):
|
989 |
+
# Slice out the current octave of filters
|
990 |
+
if i == 0:
|
991 |
+
sl = slice(-n_filters, None)
|
992 |
+
else:
|
993 |
+
sl = slice(-n_filters * (i + 1), -n_filters * i)
|
994 |
+
|
995 |
+
# This may be incorrect with early downsampling
|
996 |
+
freqs_oct = freqs[sl]
|
997 |
+
|
998 |
+
fft_basis, n_fft, _ = __vqt_filter_fft(
|
999 |
+
my_sr,
|
1000 |
+
freqs_oct,
|
1001 |
+
filter_scale,
|
1002 |
+
norm,
|
1003 |
+
sparsity,
|
1004 |
+
window=window,
|
1005 |
+
gamma=gamma,
|
1006 |
+
dtype=dtype,
|
1007 |
+
alpha=alpha,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
# Re-scale the filters to compensate for downsampling
|
1011 |
+
fft_basis[:] *= np.sqrt(sr / my_sr)
|
1012 |
+
|
1013 |
+
# Compute the vqt filter response and append to the stack
|
1014 |
+
vqt_resp.append(
|
1015 |
+
__cqt_response(my_y, n_fft, my_hop, fft_basis, pad_mode, dtype=dtype)
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
if my_hop % 2 == 0:
|
1019 |
+
my_hop //= 2
|
1020 |
+
my_sr /= 2.0
|
1021 |
+
my_y = audio.resample(
|
1022 |
+
my_y, orig_sr=2, target_sr=1, res_type=res_type, scale=True
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
V = __trim_stack(vqt_resp, n_bins, dtype)
|
1026 |
+
|
1027 |
+
if scale:
|
1028 |
+
# Recompute lengths here because early downsampling may have changed
|
1029 |
+
# our sampling rate
|
1030 |
+
lengths, _ = filters.wavelet_lengths(
|
1031 |
+
freqs=freqs,
|
1032 |
+
sr=sr,
|
1033 |
+
window=window,
|
1034 |
+
filter_scale=filter_scale,
|
1035 |
+
gamma=gamma,
|
1036 |
+
alpha=alpha,
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
# reshape lengths to match V shape
|
1040 |
+
lengths = util.expand_to(lengths, ndim=V.ndim, axes=-2)
|
1041 |
+
V /= np.sqrt(lengths)
|
1042 |
+
|
1043 |
+
return V
|
1044 |
+
|
1045 |
+
|
1046 |
+
@cache(level=10)
|
1047 |
+
def __vqt_filter_fft(
|
1048 |
+
sr,
|
1049 |
+
freqs,
|
1050 |
+
filter_scale,
|
1051 |
+
norm,
|
1052 |
+
sparsity,
|
1053 |
+
hop_length=None,
|
1054 |
+
window="hann",
|
1055 |
+
gamma=0.0,
|
1056 |
+
dtype=np.complex64,
|
1057 |
+
alpha=None,
|
1058 |
+
):
|
1059 |
+
"""Generate the frequency domain variable-Q filter basis."""
|
1060 |
+
|
1061 |
+
basis, lengths = filters.wavelet(
|
1062 |
+
freqs=freqs,
|
1063 |
+
sr=sr,
|
1064 |
+
filter_scale=filter_scale,
|
1065 |
+
norm=norm,
|
1066 |
+
pad_fft=True,
|
1067 |
+
window=window,
|
1068 |
+
gamma=gamma,
|
1069 |
+
alpha=alpha,
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
# Filters are padded up to the nearest integral power of 2
|
1073 |
+
n_fft = basis.shape[1]
|
1074 |
+
|
1075 |
+
if hop_length is not None and n_fft < 2.0 ** (1 + np.ceil(np.log2(hop_length))):
|
1076 |
+
n_fft = int(2.0 ** (1 + np.ceil(np.log2(hop_length))))
|
1077 |
+
|
1078 |
+
# re-normalize bases with respect to the FFT window length
|
1079 |
+
basis *= lengths[:, np.newaxis] / float(n_fft)
|
1080 |
+
|
1081 |
+
# FFT and retain only the non-negative frequencies
|
1082 |
+
fft = get_fftlib()
|
1083 |
+
fft_basis = fft.fft(basis, n=n_fft, axis=1)[:, : (n_fft // 2) + 1]
|
1084 |
+
|
1085 |
+
# sparsify the basis
|
1086 |
+
fft_basis = util.sparsify_rows(fft_basis, quantile=sparsity, dtype=dtype)
|
1087 |
+
|
1088 |
+
return fft_basis, n_fft, lengths
|
1089 |
+
|
1090 |
+
|
1091 |
+
def __trim_stack(
|
1092 |
+
cqt_resp: List[np.ndarray], n_bins: int, dtype: DTypeLike
|
1093 |
+
) -> np.ndarray:
|
1094 |
+
"""Helper function to trim and stack a collection of CQT responses"""
|
1095 |
+
|
1096 |
+
max_col = min(c_i.shape[-1] for c_i in cqt_resp)
|
1097 |
+
# Grab any leading dimensions
|
1098 |
+
shape = list(cqt_resp[0].shape)
|
1099 |
+
shape[-2] = n_bins
|
1100 |
+
shape[-1] = max_col
|
1101 |
+
cqt_out = np.empty(shape, dtype=dtype, order="F")
|
1102 |
+
|
1103 |
+
# Copy per-octave data into output array
|
1104 |
+
end = n_bins
|
1105 |
+
for c_i in cqt_resp:
|
1106 |
+
# By default, take the whole octave
|
1107 |
+
n_oct = c_i.shape[-2]
|
1108 |
+
# If the whole octave is more than we can fit,
|
1109 |
+
# take the highest bins from c_i
|
1110 |
+
if end < n_oct:
|
1111 |
+
cqt_out[..., :end, :] = c_i[..., -end:, :max_col]
|
1112 |
+
else:
|
1113 |
+
cqt_out[..., end - n_oct : end, :] = c_i[..., :max_col]
|
1114 |
+
|
1115 |
+
end -= n_oct
|
1116 |
+
|
1117 |
+
return cqt_out
|
1118 |
+
|
1119 |
+
|
1120 |
+
def __cqt_response(
|
1121 |
+
y, n_fft, hop_length, fft_basis, mode, window="ones", phase=True, dtype=None
|
1122 |
+
):
|
1123 |
+
"""Compute the filter response with a target STFT hop."""
|
1124 |
+
|
1125 |
+
# Compute the STFT matrix
|
1126 |
+
D = stft(
|
1127 |
+
y, n_fft=n_fft, hop_length=hop_length, window=window, pad_mode=mode, dtype=dtype
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
if not phase:
|
1131 |
+
D = np.abs(D)
|
1132 |
+
|
1133 |
+
# Reshape D to Dr
|
1134 |
+
Dr = D.reshape((-1, D.shape[-2], D.shape[-1]))
|
1135 |
+
output_flat = np.empty(
|
1136 |
+
(Dr.shape[0], fft_basis.shape[0], Dr.shape[-1]), dtype=D.dtype
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
# iterate over channels
|
1140 |
+
# project fft_basis.dot(Dr[i])
|
1141 |
+
for i in range(Dr.shape[0]):
|
1142 |
+
output_flat[i] = fft_basis.dot(Dr[i])
|
1143 |
+
|
1144 |
+
# reshape Dr to match D's leading dimensions again
|
1145 |
+
shape = list(D.shape)
|
1146 |
+
shape[-2] = fft_basis.shape[0]
|
1147 |
+
return output_flat.reshape(shape)
|
1148 |
+
|
1149 |
+
|
1150 |
+
def __early_downsample_count(nyquist, filter_cutoff, hop_length, n_octaves):
|
1151 |
+
"""Compute the number of early downsampling operations"""
|
1152 |
+
|
1153 |
+
downsample_count1 = max(0, int(np.ceil(np.log2(nyquist / filter_cutoff)) - 1) - 1)
|
1154 |
+
|
1155 |
+
num_twos = __num_two_factors(hop_length)
|
1156 |
+
downsample_count2 = max(0, num_twos - n_octaves + 1)
|
1157 |
+
|
1158 |
+
return min(downsample_count1, downsample_count2)
|
1159 |
+
|
1160 |
+
|
1161 |
+
def __early_downsample(
|
1162 |
+
y, sr, hop_length, res_type, n_octaves, nyquist, filter_cutoff, scale
|
1163 |
+
):
|
1164 |
+
"""Perform early downsampling on an audio signal, if it applies."""
|
1165 |
+
|
1166 |
+
downsample_count = __early_downsample_count(
|
1167 |
+
nyquist, filter_cutoff, hop_length, n_octaves
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
if downsample_count > 0:
|
1171 |
+
downsample_factor = 2 ** (downsample_count)
|
1172 |
+
|
1173 |
+
hop_length //= downsample_factor
|
1174 |
+
|
1175 |
+
if y.shape[-1] < downsample_factor:
|
1176 |
+
raise ParameterError(
|
1177 |
+
f"Input signal length={len(y):d} is too short for "
|
1178 |
+
f"{n_octaves:d}-octave CQT"
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
new_sr = sr / float(downsample_factor)
|
1182 |
+
y = audio.resample(
|
1183 |
+
y, orig_sr=downsample_factor, target_sr=1, res_type=res_type, scale=True
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
# If we're not going to length-scale after CQT, we
|
1187 |
+
# need to compensate for the downsampling factor here
|
1188 |
+
if not scale:
|
1189 |
+
y *= np.sqrt(downsample_factor)
|
1190 |
+
|
1191 |
+
sr = new_sr
|
1192 |
+
|
1193 |
+
return y, sr, hop_length
|
1194 |
+
|
1195 |
+
|
1196 |
+
@jit(nopython=True, cache=False)
|
1197 |
+
def __num_two_factors(x):
|
1198 |
+
"""Return how many times integer x can be evenly divided by 2.
|
1199 |
+
|
1200 |
+
Returns 0 for non-positive integers.
|
1201 |
+
"""
|
1202 |
+
if x <= 0:
|
1203 |
+
return 0
|
1204 |
+
num_twos = 0
|
1205 |
+
while x % 2 == 0:
|
1206 |
+
num_twos += 1
|
1207 |
+
x //= 2
|
1208 |
+
|
1209 |
+
return num_twos
|
1210 |
+
|
1211 |
+
|
1212 |
+
def griffinlim_cqt(
|
1213 |
+
C: np.ndarray,
|
1214 |
+
*,
|
1215 |
+
n_iter: int = 32,
|
1216 |
+
sr: float = 22050,
|
1217 |
+
hop_length: int = 512,
|
1218 |
+
fmin: Optional[_FloatLike_co] = None,
|
1219 |
+
bins_per_octave: int = 12,
|
1220 |
+
tuning: float = 0.0,
|
1221 |
+
filter_scale: float = 1,
|
1222 |
+
norm: Optional[float] = 1,
|
1223 |
+
sparsity: float = 0.01,
|
1224 |
+
window: _WindowSpec = "hann",
|
1225 |
+
scale: bool = True,
|
1226 |
+
pad_mode: _PadMode = "constant",
|
1227 |
+
res_type: str = "soxr_hq",
|
1228 |
+
dtype: Optional[DTypeLike] = None,
|
1229 |
+
length: Optional[int] = None,
|
1230 |
+
momentum: float = 0.99,
|
1231 |
+
init: Optional[str] = "random",
|
1232 |
+
random_state: Optional[
|
1233 |
+
Union[int, np.random.RandomState, np.random.Generator]
|
1234 |
+
] = None,
|
1235 |
+
) -> np.ndarray:
|
1236 |
+
"""Approximate constant-Q magnitude spectrogram inversion using the "fast" Griffin-Lim
|
1237 |
+
algorithm.
|
1238 |
+
|
1239 |
+
Given the magnitude of a constant-Q spectrogram (``C``), the algorithm randomly initializes
|
1240 |
+
phase estimates, and then alternates forward- and inverse-CQT operations. [#]_
|
1241 |
+
|
1242 |
+
This implementation is based on the (fast) Griffin-Lim method for Short-time Fourier Transforms, [#]_
|
1243 |
+
but adapted for use with constant-Q spectrograms.
|
1244 |
+
|
1245 |
+
.. [#] D. W. Griffin and J. S. Lim,
|
1246 |
+
"Signal estimation from modified short-time Fourier transform,"
|
1247 |
+
IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.
|
1248 |
+
|
1249 |
+
.. [#] Perraudin, N., Balazs, P., & Søndergaard, P. L.
|
1250 |
+
"A fast Griffin-Lim algorithm,"
|
1251 |
+
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4),
|
1252 |
+
Oct. 2013.
|
1253 |
+
|
1254 |
+
Parameters
|
1255 |
+
----------
|
1256 |
+
C : np.ndarray [shape=(..., n_bins, n_frames)]
|
1257 |
+
The constant-Q magnitude spectrogram
|
1258 |
+
|
1259 |
+
n_iter : int > 0
|
1260 |
+
The number of iterations to run
|
1261 |
+
|
1262 |
+
sr : number > 0
|
1263 |
+
Audio sampling rate
|
1264 |
+
|
1265 |
+
hop_length : int > 0
|
1266 |
+
The hop length of the CQT
|
1267 |
+
|
1268 |
+
fmin : number > 0
|
1269 |
+
Minimum frequency for the CQT.
|
1270 |
+
|
1271 |
+
If not provided, it defaults to `C1`.
|
1272 |
+
|
1273 |
+
bins_per_octave : int > 0
|
1274 |
+
Number of bins per octave
|
1275 |
+
|
1276 |
+
tuning : float
|
1277 |
+
Tuning deviation from A440, in fractions of a bin
|
1278 |
+
|
1279 |
+
filter_scale : float > 0
|
1280 |
+
Filter scale factor. Small values (<1) use shorter windows
|
1281 |
+
for improved time resolution.
|
1282 |
+
|
1283 |
+
norm : {inf, -inf, 0, float > 0}
|
1284 |
+
Type of norm to use for basis function normalization.
|
1285 |
+
See `librosa.util.normalize`.
|
1286 |
+
|
1287 |
+
sparsity : float in [0, 1)
|
1288 |
+
Sparsify the CQT basis by discarding up to ``sparsity``
|
1289 |
+
fraction of the energy in each basis.
|
1290 |
+
|
1291 |
+
Set ``sparsity=0`` to disable sparsification.
|
1292 |
+
|
1293 |
+
window : str, tuple, or function
|
1294 |
+
Window specification for the basis filters.
|
1295 |
+
See `filters.get_window` for details.
|
1296 |
+
|
1297 |
+
scale : bool
|
1298 |
+
If ``True``, scale the CQT response by square-root the length
|
1299 |
+
of each channel's filter. This is analogous to ``norm='ortho'``
|
1300 |
+
in FFT.
|
1301 |
+
|
1302 |
+
If ``False``, do not scale the CQT. This is analogous to ``norm=None``
|
1303 |
+
in FFT.
|
1304 |
+
|
1305 |
+
pad_mode : string
|
1306 |
+
Padding mode for centered frame analysis.
|
1307 |
+
|
1308 |
+
See also: `librosa.stft` and `numpy.pad`.
|
1309 |
+
|
1310 |
+
res_type : string
|
1311 |
+
The resampling mode for recursive downsampling.
|
1312 |
+
|
1313 |
+
See ``librosa.resample`` for a list of available options.
|
1314 |
+
|
1315 |
+
dtype : numeric type
|
1316 |
+
Real numeric type for ``y``. Default is inferred to match the precision
|
1317 |
+
of the input CQT.
|
1318 |
+
|
1319 |
+
length : int > 0, optional
|
1320 |
+
If provided, the output ``y`` is zero-padded or clipped to exactly
|
1321 |
+
``length`` samples.
|
1322 |
+
|
1323 |
+
momentum : float > 0
|
1324 |
+
The momentum parameter for fast Griffin-Lim.
|
1325 |
+
Setting this to 0 recovers the original Griffin-Lim method.
|
1326 |
+
Values near 1 can lead to faster convergence, but above 1 may not converge.
|
1327 |
+
|
1328 |
+
init : None or 'random' [default]
|
1329 |
+
If 'random' (the default), then phase values are initialized randomly
|
1330 |
+
according to ``random_state``. This is recommended when the input ``C`` is
|
1331 |
+
a magnitude spectrogram with no initial phase estimates.
|
1332 |
+
|
1333 |
+
If ``None``, then the phase is initialized from ``C``. This is useful when
|
1334 |
+
an initial guess for phase can be provided, or when you want to resume
|
1335 |
+
Griffin-Lim from a previous output.
|
1336 |
+
|
1337 |
+
random_state : None, int, np.random.RandomState, or np.random.Generator
|
1338 |
+
If int, random_state is the seed used by the random number generator
|
1339 |
+
for phase initialization.
|
1340 |
+
|
1341 |
+
If `np.random.RandomState` or `np.random.Generator` instance, the random number generator itself.
|
1342 |
+
|
1343 |
+
If ``None``, defaults to the `np.random.default_rng()` object.
|
1344 |
+
|
1345 |
+
Returns
|
1346 |
+
-------
|
1347 |
+
y : np.ndarray [shape=(..., n)]
|
1348 |
+
time-domain signal reconstructed from ``C``
|
1349 |
+
|
1350 |
+
See Also
|
1351 |
+
--------
|
1352 |
+
cqt
|
1353 |
+
icqt
|
1354 |
+
griffinlim
|
1355 |
+
filters.get_window
|
1356 |
+
resample
|
1357 |
+
|
1358 |
+
Examples
|
1359 |
+
--------
|
1360 |
+
A basis CQT inverse example
|
1361 |
+
|
1362 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), sr=None)
|
1363 |
+
>>> # Get the CQT magnitude, 7 octaves at 36 bins per octave
|
1364 |
+
>>> C = np.abs(librosa.cqt(y=y, sr=sr, bins_per_octave=36, n_bins=7*36))
|
1365 |
+
>>> # Invert using Griffin-Lim
|
1366 |
+
>>> y_inv = librosa.griffinlim_cqt(C, sr=sr, bins_per_octave=36)
|
1367 |
+
>>> # And invert without estimating phase
|
1368 |
+
>>> y_icqt = librosa.icqt(C, sr=sr, bins_per_octave=36)
|
1369 |
+
|
1370 |
+
Wave-plot the results
|
1371 |
+
|
1372 |
+
>>> import matplotlib.pyplot as plt
|
1373 |
+
>>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
|
1374 |
+
>>> librosa.display.waveshow(y, sr=sr, color='b', ax=ax[0])
|
1375 |
+
>>> ax[0].set(title='Original', xlabel=None)
|
1376 |
+
>>> ax[0].label_outer()
|
1377 |
+
>>> librosa.display.waveshow(y_inv, sr=sr, color='g', ax=ax[1])
|
1378 |
+
>>> ax[1].set(title='Griffin-Lim reconstruction', xlabel=None)
|
1379 |
+
>>> ax[1].label_outer()
|
1380 |
+
>>> librosa.display.waveshow(y_icqt, sr=sr, color='r', ax=ax[2])
|
1381 |
+
>>> ax[2].set(title='Magnitude-only icqt reconstruction')
|
1382 |
+
"""
|
1383 |
+
if fmin is None:
|
1384 |
+
fmin = note_to_hz("C1")
|
1385 |
+
|
1386 |
+
if random_state is None:
|
1387 |
+
rng = np.random.default_rng()
|
1388 |
+
elif isinstance(random_state, int):
|
1389 |
+
rng = np.random.RandomState(seed=random_state) # type: ignore
|
1390 |
+
elif isinstance(random_state, (np.random.RandomState, np.random.Generator)):
|
1391 |
+
rng = random_state # type: ignore
|
1392 |
+
else:
|
1393 |
+
_ensure_not_reachable(random_state)
|
1394 |
+
raise ParameterError(f"Unsupported random_state={random_state!r}")
|
1395 |
+
|
1396 |
+
if momentum > 1:
|
1397 |
+
warnings.warn(
|
1398 |
+
f"Griffin-Lim with momentum={momentum} > 1 can be unstable. "
|
1399 |
+
"Proceed with caution!",
|
1400 |
+
stacklevel=2,
|
1401 |
+
)
|
1402 |
+
elif momentum < 0:
|
1403 |
+
raise ParameterError(f"griffinlim_cqt() called with momentum={momentum} < 0")
|
1404 |
+
|
1405 |
+
# using complex64 will keep the result to minimal necessary precision
|
1406 |
+
angles = np.empty(C.shape, dtype=np.complex64)
|
1407 |
+
eps = util.tiny(angles)
|
1408 |
+
|
1409 |
+
if init == "random":
|
1410 |
+
# randomly initialize the phase
|
1411 |
+
angles[:] = util.phasor(2 * np.pi * rng.random(size=C.shape))
|
1412 |
+
elif init is None:
|
1413 |
+
# Initialize an all ones complex matrix
|
1414 |
+
angles[:] = 1.0
|
1415 |
+
else:
|
1416 |
+
raise ParameterError(f"init={init} must either None or 'random'")
|
1417 |
+
|
1418 |
+
# And initialize the previous iterate to 0
|
1419 |
+
rebuilt: np.ndarray = np.array(0.0)
|
1420 |
+
|
1421 |
+
for _ in range(n_iter):
|
1422 |
+
# Store the previous iterate
|
1423 |
+
tprev = rebuilt
|
1424 |
+
|
1425 |
+
# Invert with our current estimate of the phases
|
1426 |
+
inverse = icqt(
|
1427 |
+
C * angles,
|
1428 |
+
sr=sr,
|
1429 |
+
hop_length=hop_length,
|
1430 |
+
bins_per_octave=bins_per_octave,
|
1431 |
+
fmin=fmin,
|
1432 |
+
tuning=tuning,
|
1433 |
+
filter_scale=filter_scale,
|
1434 |
+
window=window,
|
1435 |
+
length=length,
|
1436 |
+
res_type=res_type,
|
1437 |
+
norm=norm,
|
1438 |
+
scale=scale,
|
1439 |
+
sparsity=sparsity,
|
1440 |
+
dtype=dtype,
|
1441 |
+
)
|
1442 |
+
|
1443 |
+
# Rebuild the spectrogram
|
1444 |
+
rebuilt = cqt(
|
1445 |
+
inverse,
|
1446 |
+
sr=sr,
|
1447 |
+
bins_per_octave=bins_per_octave,
|
1448 |
+
n_bins=C.shape[-2],
|
1449 |
+
hop_length=hop_length,
|
1450 |
+
fmin=fmin,
|
1451 |
+
tuning=tuning,
|
1452 |
+
filter_scale=filter_scale,
|
1453 |
+
window=window,
|
1454 |
+
norm=norm,
|
1455 |
+
scale=scale,
|
1456 |
+
sparsity=sparsity,
|
1457 |
+
pad_mode=pad_mode,
|
1458 |
+
res_type=res_type,
|
1459 |
+
)
|
1460 |
+
|
1461 |
+
# Update our phase estimates
|
1462 |
+
angles[:] = rebuilt - (momentum / (1 + momentum)) * tprev
|
1463 |
+
angles[:] /= np.abs(angles) + eps
|
1464 |
+
|
1465 |
+
# Return the final phase estimates
|
1466 |
+
return icqt(
|
1467 |
+
C * angles,
|
1468 |
+
sr=sr,
|
1469 |
+
hop_length=hop_length,
|
1470 |
+
bins_per_octave=bins_per_octave,
|
1471 |
+
tuning=tuning,
|
1472 |
+
filter_scale=filter_scale,
|
1473 |
+
fmin=fmin,
|
1474 |
+
window=window,
|
1475 |
+
length=length,
|
1476 |
+
res_type=res_type,
|
1477 |
+
norm=norm,
|
1478 |
+
scale=scale,
|
1479 |
+
sparsity=sparsity,
|
1480 |
+
dtype=dtype,
|
1481 |
+
)
|
1482 |
+
|
1483 |
+
|
1484 |
+
def __bpo_to_alpha(bins_per_octave: int) -> float:
|
1485 |
+
"""Compute the alpha coefficient for a given number of bins per octave
|
1486 |
+
|
1487 |
+
Parameters
|
1488 |
+
----------
|
1489 |
+
bins_per_octave : int
|
1490 |
+
|
1491 |
+
Returns
|
1492 |
+
-------
|
1493 |
+
alpha : number > 0
|
1494 |
+
"""
|
1495 |
+
|
1496 |
+
r = 2 ** (1 / bins_per_octave)
|
1497 |
+
return (r**2 - 1) / (r**2 + 1)
|
filters.py
ADDED
@@ -0,0 +1,1661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Filters
|
5 |
+
=======
|
6 |
+
|
7 |
+
Filter bank construction
|
8 |
+
------------------------
|
9 |
+
.. autosummary::
|
10 |
+
:toctree: generated/
|
11 |
+
|
12 |
+
mel
|
13 |
+
chroma
|
14 |
+
wavelet
|
15 |
+
semitone_filterbank
|
16 |
+
|
17 |
+
Window functions
|
18 |
+
----------------
|
19 |
+
.. autosummary::
|
20 |
+
:toctree: generated/
|
21 |
+
|
22 |
+
window_bandwidth
|
23 |
+
get_window
|
24 |
+
|
25 |
+
Miscellaneous
|
26 |
+
-------------
|
27 |
+
.. autosummary::
|
28 |
+
:toctree: generated/
|
29 |
+
|
30 |
+
wavelet_lengths
|
31 |
+
cq_to_chroma
|
32 |
+
mr_frequencies
|
33 |
+
window_sumsquare
|
34 |
+
diagonal_filter
|
35 |
+
|
36 |
+
Deprecated
|
37 |
+
----------
|
38 |
+
.. autosummary::
|
39 |
+
:toctree: generated/
|
40 |
+
|
41 |
+
constant_q
|
42 |
+
constant_q_lengths
|
43 |
+
|
44 |
+
"""
|
45 |
+
import warnings
|
46 |
+
|
47 |
+
import numpy as np
|
48 |
+
import scipy
|
49 |
+
import scipy.signal
|
50 |
+
import scipy.ndimage
|
51 |
+
|
52 |
+
from numba import jit
|
53 |
+
|
54 |
+
from ._cache import cache
|
55 |
+
from . import util
|
56 |
+
from .util.exceptions import ParameterError
|
57 |
+
from .util.decorators import deprecated
|
58 |
+
|
59 |
+
from .core.convert import note_to_hz, hz_to_midi, midi_to_hz, hz_to_octs
|
60 |
+
from .core.convert import fft_frequencies, mel_frequencies
|
61 |
+
from numpy.typing import ArrayLike, DTypeLike
|
62 |
+
from typing import Any, List, Optional, Tuple, Union
|
63 |
+
from typing_extensions import Literal
|
64 |
+
from ._typing import _WindowSpec, _FloatLike_co
|
65 |
+
|
66 |
+
__all__ = [
|
67 |
+
"mel",
|
68 |
+
"chroma",
|
69 |
+
"constant_q",
|
70 |
+
"constant_q_lengths",
|
71 |
+
"cq_to_chroma",
|
72 |
+
"window_bandwidth",
|
73 |
+
"get_window",
|
74 |
+
"mr_frequencies",
|
75 |
+
"semitone_filterbank",
|
76 |
+
"window_sumsquare",
|
77 |
+
"diagonal_filter",
|
78 |
+
"wavelet",
|
79 |
+
"wavelet_lengths",
|
80 |
+
]
|
81 |
+
|
82 |
+
# Dictionary of window function bandwidths
|
83 |
+
|
84 |
+
WINDOW_BANDWIDTHS = {
|
85 |
+
"bart": 1.3334961334912805,
|
86 |
+
"barthann": 1.4560255965133932,
|
87 |
+
"bartlett": 1.3334961334912805,
|
88 |
+
"bkh": 2.0045975283585014,
|
89 |
+
"black": 1.7269681554262326,
|
90 |
+
"blackharr": 2.0045975283585014,
|
91 |
+
"blackman": 1.7269681554262326,
|
92 |
+
"blackmanharris": 2.0045975283585014,
|
93 |
+
"blk": 1.7269681554262326,
|
94 |
+
"bman": 1.7859588613860062,
|
95 |
+
"bmn": 1.7859588613860062,
|
96 |
+
"bohman": 1.7859588613860062,
|
97 |
+
"box": 1.0,
|
98 |
+
"boxcar": 1.0,
|
99 |
+
"brt": 1.3334961334912805,
|
100 |
+
"brthan": 1.4560255965133932,
|
101 |
+
"bth": 1.4560255965133932,
|
102 |
+
"cosine": 1.2337005350199792,
|
103 |
+
"flat": 2.7762255046484143,
|
104 |
+
"flattop": 2.7762255046484143,
|
105 |
+
"flt": 2.7762255046484143,
|
106 |
+
"halfcosine": 1.2337005350199792,
|
107 |
+
"ham": 1.3629455320350348,
|
108 |
+
"hamm": 1.3629455320350348,
|
109 |
+
"hamming": 1.3629455320350348,
|
110 |
+
"han": 1.50018310546875,
|
111 |
+
"hann": 1.50018310546875,
|
112 |
+
"nut": 1.9763500280946082,
|
113 |
+
"nutl": 1.9763500280946082,
|
114 |
+
"nuttall": 1.9763500280946082,
|
115 |
+
"ones": 1.0,
|
116 |
+
"par": 1.9174603174603191,
|
117 |
+
"parz": 1.9174603174603191,
|
118 |
+
"parzen": 1.9174603174603191,
|
119 |
+
"rect": 1.0,
|
120 |
+
"rectangular": 1.0,
|
121 |
+
"tri": 1.3331706523555851,
|
122 |
+
"triang": 1.3331706523555851,
|
123 |
+
"triangle": 1.3331706523555851,
|
124 |
+
}
|
125 |
+
|
126 |
+
|
127 |
+
@cache(level=10)
|
128 |
+
def mel(
|
129 |
+
*,
|
130 |
+
sr: float,
|
131 |
+
n_fft: int,
|
132 |
+
n_mels: int = 128,
|
133 |
+
fmin: float = 0.0,
|
134 |
+
fmax: Optional[float] = None,
|
135 |
+
htk: bool = False,
|
136 |
+
norm: Optional[Union[Literal["slaney"], float]] = "slaney",
|
137 |
+
dtype: DTypeLike = np.float32,
|
138 |
+
) -> np.ndarray:
|
139 |
+
"""Create a Mel filter-bank.
|
140 |
+
|
141 |
+
This produces a linear transformation matrix to project
|
142 |
+
FFT bins onto Mel-frequency bins.
|
143 |
+
|
144 |
+
Parameters
|
145 |
+
----------
|
146 |
+
sr : number > 0 [scalar]
|
147 |
+
sampling rate of the incoming signal
|
148 |
+
|
149 |
+
n_fft : int > 0 [scalar]
|
150 |
+
number of FFT components
|
151 |
+
|
152 |
+
n_mels : int > 0 [scalar]
|
153 |
+
number of Mel bands to generate
|
154 |
+
|
155 |
+
fmin : float >= 0 [scalar]
|
156 |
+
lowest frequency (in Hz)
|
157 |
+
|
158 |
+
fmax : float >= 0 [scalar]
|
159 |
+
highest frequency (in Hz).
|
160 |
+
If `None`, use ``fmax = sr / 2.0``
|
161 |
+
|
162 |
+
htk : bool [scalar]
|
163 |
+
use HTK formula instead of Slaney
|
164 |
+
|
165 |
+
norm : {None, 'slaney', or number} [scalar]
|
166 |
+
If 'slaney', divide the triangular mel weights by the width of the mel band
|
167 |
+
(area normalization).
|
168 |
+
|
169 |
+
If numeric, use `librosa.util.normalize` to normalize each filter by to unit l_p norm.
|
170 |
+
See `librosa.util.normalize` for a full description of supported norm values
|
171 |
+
(including `+-np.inf`).
|
172 |
+
|
173 |
+
Otherwise, leave all the triangles aiming for a peak value of 1.0
|
174 |
+
|
175 |
+
dtype : np.dtype
|
176 |
+
The data type of the output basis.
|
177 |
+
By default, uses 32-bit (single-precision) floating point.
|
178 |
+
|
179 |
+
Returns
|
180 |
+
-------
|
181 |
+
M : np.ndarray [shape=(n_mels, 1 + n_fft/2)]
|
182 |
+
Mel transform matrix
|
183 |
+
|
184 |
+
See Also
|
185 |
+
--------
|
186 |
+
librosa.util.normalize
|
187 |
+
|
188 |
+
Notes
|
189 |
+
-----
|
190 |
+
This function caches at level 10.
|
191 |
+
|
192 |
+
Examples
|
193 |
+
--------
|
194 |
+
>>> melfb = librosa.filters.mel(sr=22050, n_fft=2048)
|
195 |
+
>>> melfb
|
196 |
+
array([[ 0. , 0.016, ..., 0. , 0. ],
|
197 |
+
[ 0. , 0. , ..., 0. , 0. ],
|
198 |
+
...,
|
199 |
+
[ 0. , 0. , ..., 0. , 0. ],
|
200 |
+
[ 0. , 0. , ..., 0. , 0. ]])
|
201 |
+
|
202 |
+
Clip the maximum frequency to 8KHz
|
203 |
+
|
204 |
+
>>> librosa.filters.mel(sr=22050, n_fft=2048, fmax=8000)
|
205 |
+
array([[ 0. , 0.02, ..., 0. , 0. ],
|
206 |
+
[ 0. , 0. , ..., 0. , 0. ],
|
207 |
+
...,
|
208 |
+
[ 0. , 0. , ..., 0. , 0. ],
|
209 |
+
[ 0. , 0. , ..., 0. , 0. ]])
|
210 |
+
|
211 |
+
>>> import matplotlib.pyplot as plt
|
212 |
+
>>> fig, ax = plt.subplots()
|
213 |
+
>>> img = librosa.display.specshow(melfb, x_axis='linear', ax=ax)
|
214 |
+
>>> ax.set(ylabel='Mel filter', title='Mel filter bank')
|
215 |
+
>>> fig.colorbar(img, ax=ax)
|
216 |
+
"""
|
217 |
+
|
218 |
+
if fmax is None:
|
219 |
+
fmax = float(sr) / 2
|
220 |
+
|
221 |
+
# Initialize the weights
|
222 |
+
n_mels = int(n_mels)
|
223 |
+
weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)
|
224 |
+
|
225 |
+
# Center freqs of each FFT bin
|
226 |
+
fftfreqs = fft_frequencies(sr=sr, n_fft=n_fft)
|
227 |
+
|
228 |
+
# 'Center freqs' of mel bands - uniformly spaced between limits
|
229 |
+
mel_f = mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax, htk=htk)
|
230 |
+
|
231 |
+
fdiff = np.diff(mel_f)
|
232 |
+
ramps = np.subtract.outer(mel_f, fftfreqs)
|
233 |
+
|
234 |
+
for i in range(n_mels):
|
235 |
+
# lower and upper slopes for all bins
|
236 |
+
lower = -ramps[i] / fdiff[i]
|
237 |
+
upper = ramps[i + 2] / fdiff[i + 1]
|
238 |
+
|
239 |
+
# .. then intersect them with each other and zero
|
240 |
+
weights[i] = np.maximum(0, np.minimum(lower, upper))
|
241 |
+
|
242 |
+
if isinstance(norm, str):
|
243 |
+
if norm == "slaney":
|
244 |
+
# Slaney-style mel is scaled to be approx constant energy per channel
|
245 |
+
enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
|
246 |
+
weights *= enorm[:, np.newaxis]
|
247 |
+
else:
|
248 |
+
raise ParameterError(f"Unsupported norm={norm}")
|
249 |
+
else:
|
250 |
+
weights = util.normalize(weights, norm=norm, axis=-1)
|
251 |
+
|
252 |
+
# Only check weights if f_mel[0] is positive
|
253 |
+
if not np.all((mel_f[:-2] == 0) | (weights.max(axis=1) > 0)):
|
254 |
+
# This means we have an empty channel somewhere
|
255 |
+
warnings.warn(
|
256 |
+
"Empty filters detected in mel frequency basis. "
|
257 |
+
"Some channels will produce empty responses. "
|
258 |
+
"Try increasing your sampling rate (and fmax) or "
|
259 |
+
"reducing n_mels.",
|
260 |
+
stacklevel=2,
|
261 |
+
)
|
262 |
+
|
263 |
+
return weights
|
264 |
+
|
265 |
+
|
266 |
+
@cache(level=10)
|
267 |
+
def chroma(
|
268 |
+
*,
|
269 |
+
sr: float,
|
270 |
+
n_fft: int,
|
271 |
+
n_chroma: int = 12,
|
272 |
+
tuning: float = 0.0,
|
273 |
+
ctroct: float = 5.0,
|
274 |
+
octwidth: Union[float, None] = 2,
|
275 |
+
norm: Optional[float] = 2,
|
276 |
+
base_c: bool = True,
|
277 |
+
dtype: DTypeLike = np.float32,
|
278 |
+
) -> np.ndarray:
|
279 |
+
"""Create a chroma filter bank.
|
280 |
+
|
281 |
+
This creates a linear transformation matrix to project
|
282 |
+
FFT bins onto chroma bins (i.e. pitch classes).
|
283 |
+
|
284 |
+
Parameters
|
285 |
+
----------
|
286 |
+
sr : number > 0 [scalar]
|
287 |
+
audio sampling rate
|
288 |
+
|
289 |
+
n_fft : int > 0 [scalar]
|
290 |
+
number of FFT bins
|
291 |
+
|
292 |
+
n_chroma : int > 0 [scalar]
|
293 |
+
number of chroma bins
|
294 |
+
|
295 |
+
tuning : float
|
296 |
+
Tuning deviation from A440 in fractions of a chroma bin.
|
297 |
+
|
298 |
+
ctroct : float > 0 [scalar]
|
299 |
+
|
300 |
+
octwidth : float > 0 or None [scalar]
|
301 |
+
``ctroct`` and ``octwidth`` specify a dominance window:
|
302 |
+
a Gaussian weighting centered on ``ctroct`` (in octs, A0 = 27.5Hz)
|
303 |
+
and with a gaussian half-width of ``octwidth``.
|
304 |
+
|
305 |
+
Set ``octwidth`` to `None` to use a flat weighting.
|
306 |
+
|
307 |
+
norm : float > 0 or np.inf
|
308 |
+
Normalization factor for each filter
|
309 |
+
|
310 |
+
base_c : bool
|
311 |
+
If True, the filter bank will start at 'C'.
|
312 |
+
If False, the filter bank will start at 'A'.
|
313 |
+
|
314 |
+
dtype : np.dtype
|
315 |
+
The data type of the output basis.
|
316 |
+
By default, uses 32-bit (single-precision) floating point.
|
317 |
+
|
318 |
+
Returns
|
319 |
+
-------
|
320 |
+
wts : ndarray [shape=(n_chroma, 1 + n_fft / 2)]
|
321 |
+
Chroma filter matrix
|
322 |
+
|
323 |
+
See Also
|
324 |
+
--------
|
325 |
+
librosa.util.normalize
|
326 |
+
librosa.feature.chroma_stft
|
327 |
+
|
328 |
+
Notes
|
329 |
+
-----
|
330 |
+
This function caches at level 10.
|
331 |
+
|
332 |
+
Examples
|
333 |
+
--------
|
334 |
+
Build a simple chroma filter bank
|
335 |
+
|
336 |
+
>>> chromafb = librosa.filters.chroma(sr=22050, n_fft=4096)
|
337 |
+
array([[ 1.689e-05, 3.024e-04, ..., 4.639e-17, 5.327e-17],
|
338 |
+
[ 1.716e-05, 2.652e-04, ..., 2.674e-25, 3.176e-25],
|
339 |
+
...,
|
340 |
+
[ 1.578e-05, 3.619e-04, ..., 8.577e-06, 9.205e-06],
|
341 |
+
[ 1.643e-05, 3.355e-04, ..., 1.474e-10, 1.636e-10]])
|
342 |
+
|
343 |
+
Use quarter-tones instead of semitones
|
344 |
+
|
345 |
+
>>> librosa.filters.chroma(sr=22050, n_fft=4096, n_chroma=24)
|
346 |
+
array([[ 1.194e-05, 2.138e-04, ..., 6.297e-64, 1.115e-63],
|
347 |
+
[ 1.206e-05, 2.009e-04, ..., 1.546e-79, 2.929e-79],
|
348 |
+
...,
|
349 |
+
[ 1.162e-05, 2.372e-04, ..., 6.417e-38, 9.923e-38],
|
350 |
+
[ 1.180e-05, 2.260e-04, ..., 4.697e-50, 7.772e-50]])
|
351 |
+
|
352 |
+
Equally weight all octaves
|
353 |
+
|
354 |
+
>>> librosa.filters.chroma(sr=22050, n_fft=4096, octwidth=None)
|
355 |
+
array([[ 3.036e-01, 2.604e-01, ..., 2.445e-16, 2.809e-16],
|
356 |
+
[ 3.084e-01, 2.283e-01, ..., 1.409e-24, 1.675e-24],
|
357 |
+
...,
|
358 |
+
[ 2.836e-01, 3.116e-01, ..., 4.520e-05, 4.854e-05],
|
359 |
+
[ 2.953e-01, 2.888e-01, ..., 7.768e-10, 8.629e-10]])
|
360 |
+
|
361 |
+
>>> import matplotlib.pyplot as plt
|
362 |
+
>>> fig, ax = plt.subplots()
|
363 |
+
>>> img = librosa.display.specshow(chromafb, x_axis='linear', ax=ax)
|
364 |
+
>>> ax.set(ylabel='Chroma filter', title='Chroma filter bank')
|
365 |
+
>>> fig.colorbar(img, ax=ax)
|
366 |
+
"""
|
367 |
+
|
368 |
+
wts = np.zeros((n_chroma, n_fft))
|
369 |
+
|
370 |
+
# Get the FFT bins, not counting the DC component
|
371 |
+
frequencies = np.linspace(0, sr, n_fft, endpoint=False)[1:]
|
372 |
+
|
373 |
+
frqbins = n_chroma * hz_to_octs(
|
374 |
+
frequencies, tuning=tuning, bins_per_octave=n_chroma
|
375 |
+
)
|
376 |
+
|
377 |
+
# make up a value for the 0 Hz bin = 1.5 octaves below bin 1
|
378 |
+
# (so chroma is 50% rotated from bin 1, and bin width is broad)
|
379 |
+
frqbins = np.concatenate(([frqbins[0] - 1.5 * n_chroma], frqbins))
|
380 |
+
|
381 |
+
binwidthbins = np.concatenate((np.maximum(frqbins[1:] - frqbins[:-1], 1.0), [1]))
|
382 |
+
|
383 |
+
D = np.subtract.outer(frqbins, np.arange(0, n_chroma, dtype="d")).T
|
384 |
+
|
385 |
+
n_chroma2 = np.round(float(n_chroma) / 2)
|
386 |
+
|
387 |
+
# Project into range -n_chroma/2 .. n_chroma/2
|
388 |
+
# add on fixed offset of 10*n_chroma to ensure all values passed to
|
389 |
+
# rem are positive
|
390 |
+
D = np.remainder(D + n_chroma2 + 10 * n_chroma, n_chroma) - n_chroma2
|
391 |
+
|
392 |
+
# Gaussian bumps - 2*D to make them narrower
|
393 |
+
wts = np.exp(-0.5 * (2 * D / np.tile(binwidthbins, (n_chroma, 1))) ** 2)
|
394 |
+
|
395 |
+
# normalize each column
|
396 |
+
wts = util.normalize(wts, norm=norm, axis=0)
|
397 |
+
|
398 |
+
# Maybe apply scaling for fft bins
|
399 |
+
if octwidth is not None:
|
400 |
+
wts *= np.tile(
|
401 |
+
np.exp(-0.5 * (((frqbins / n_chroma - ctroct) / octwidth) ** 2)),
|
402 |
+
(n_chroma, 1),
|
403 |
+
)
|
404 |
+
|
405 |
+
if base_c:
|
406 |
+
wts = np.roll(wts, -3 * (n_chroma // 12), axis=0)
|
407 |
+
|
408 |
+
# remove aliasing columns, copy to ensure row-contiguity
|
409 |
+
return np.ascontiguousarray(wts[:, : int(1 + n_fft / 2)], dtype=dtype)
|
410 |
+
|
411 |
+
|
412 |
+
def __float_window(window_spec):
|
413 |
+
"""Decorator function for windows with fractional input.
|
414 |
+
|
415 |
+
This function guarantees that for fractional ``x``, the following hold:
|
416 |
+
|
417 |
+
1. ``__float_window(window_function)(x)`` has length ``np.ceil(x)``
|
418 |
+
2. all values from ``np.floor(x)`` are set to 0.
|
419 |
+
|
420 |
+
For integer-valued ``x``, there should be no change in behavior.
|
421 |
+
"""
|
422 |
+
|
423 |
+
def _wrap(n, *args, **kwargs):
|
424 |
+
"""The wrapped window"""
|
425 |
+
n_min, n_max = int(np.floor(n)), int(np.ceil(n))
|
426 |
+
|
427 |
+
window = get_window(window_spec, n_min)
|
428 |
+
|
429 |
+
if len(window) < n_max:
|
430 |
+
window = np.pad(window, [(0, n_max - len(window))], mode="constant")
|
431 |
+
|
432 |
+
window[n_min:] = 0.0
|
433 |
+
|
434 |
+
return window
|
435 |
+
|
436 |
+
return _wrap
|
437 |
+
|
438 |
+
|
439 |
+
@deprecated(version="0.9.0", version_removed="1.0")
|
440 |
+
def constant_q(
|
441 |
+
*,
|
442 |
+
sr: float,
|
443 |
+
fmin: Optional[_FloatLike_co] = None,
|
444 |
+
n_bins: int = 84,
|
445 |
+
bins_per_octave: int = 12,
|
446 |
+
window: _WindowSpec = "hann",
|
447 |
+
filter_scale: float = 1,
|
448 |
+
pad_fft: bool = True,
|
449 |
+
norm: Optional[float] = 1,
|
450 |
+
dtype: DTypeLike = np.complex64,
|
451 |
+
gamma: float = 0,
|
452 |
+
**kwargs: Any,
|
453 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
454 |
+
r"""Construct a constant-Q basis.
|
455 |
+
|
456 |
+
This function constructs a filter bank similar to Morlet wavelets,
|
457 |
+
where complex exponentials are windowed to different lengths
|
458 |
+
such that the number of cycles remains fixed for all frequencies.
|
459 |
+
|
460 |
+
By default, a Hann window (rather than the Gaussian window of Morlet wavelets)
|
461 |
+
is used, but this can be controlled by the ``window`` parameter.
|
462 |
+
|
463 |
+
Frequencies are spaced geometrically, increasing by a factor of
|
464 |
+
``(2**(1./bins_per_octave))`` at each successive band.
|
465 |
+
|
466 |
+
.. warning:: This function is deprecated as of v0.9 and will be removed in 1.0.
|
467 |
+
See `librosa.filters.wavelet`.
|
468 |
+
|
469 |
+
Parameters
|
470 |
+
----------
|
471 |
+
sr : number > 0 [scalar]
|
472 |
+
Audio sampling rate
|
473 |
+
|
474 |
+
fmin : float > 0 [scalar]
|
475 |
+
Minimum frequency bin. Defaults to `C1 ~= 32.70`
|
476 |
+
|
477 |
+
n_bins : int > 0 [scalar]
|
478 |
+
Number of frequencies. Defaults to 7 octaves (84 bins).
|
479 |
+
|
480 |
+
bins_per_octave : int > 0 [scalar]
|
481 |
+
Number of bins per octave
|
482 |
+
|
483 |
+
window : string, tuple, number, or function
|
484 |
+
Windowing function to apply to filters.
|
485 |
+
|
486 |
+
filter_scale : float > 0 [scalar]
|
487 |
+
Scale of filter windows.
|
488 |
+
Small values (<1) use shorter windows for higher temporal resolution.
|
489 |
+
|
490 |
+
pad_fft : boolean
|
491 |
+
Center-pad all filters up to the nearest integral power of 2.
|
492 |
+
|
493 |
+
By default, padding is done with zeros, but this can be overridden
|
494 |
+
by setting the ``mode=`` field in *kwargs*.
|
495 |
+
|
496 |
+
norm : {inf, -inf, 0, float > 0}
|
497 |
+
Type of norm to use for basis function normalization.
|
498 |
+
See librosa.util.normalize
|
499 |
+
|
500 |
+
gamma : number >= 0
|
501 |
+
Bandwidth offset for variable-Q transforms.
|
502 |
+
``gamma=0`` produces a constant-Q filterbank.
|
503 |
+
|
504 |
+
dtype : np.dtype
|
505 |
+
The data type of the output basis.
|
506 |
+
By default, uses 64-bit (single precision) complex floating point.
|
507 |
+
|
508 |
+
**kwargs : additional keyword arguments
|
509 |
+
Arguments to `np.pad()` when ``pad==True``.
|
510 |
+
|
511 |
+
Returns
|
512 |
+
-------
|
513 |
+
filters : np.ndarray, ``len(filters) == n_bins``
|
514 |
+
``filters[i]`` is ``i``\ th time-domain CQT basis filter
|
515 |
+
lengths : np.ndarray, ``len(lengths) == n_bins``
|
516 |
+
The (fractional) length of each filter
|
517 |
+
|
518 |
+
Notes
|
519 |
+
-----
|
520 |
+
This function caches at level 10.
|
521 |
+
|
522 |
+
See Also
|
523 |
+
--------
|
524 |
+
wavelet
|
525 |
+
constant_q_lengths
|
526 |
+
librosa.cqt
|
527 |
+
librosa.vqt
|
528 |
+
librosa.util.normalize
|
529 |
+
|
530 |
+
Examples
|
531 |
+
--------
|
532 |
+
Use a shorter window for each filter
|
533 |
+
|
534 |
+
>>> basis, lengths = librosa.filters.constant_q(sr=22050, filter_scale=0.5)
|
535 |
+
|
536 |
+
Plot one octave of filters in time and frequency
|
537 |
+
|
538 |
+
>>> import matplotlib.pyplot as plt
|
539 |
+
>>> basis, lengths = librosa.filters.constant_q(sr=22050)
|
540 |
+
>>> fig, ax = plt.subplots(nrows=2, figsize=(10, 6))
|
541 |
+
>>> notes = librosa.midi_to_note(np.arange(24, 24 + len(basis)))
|
542 |
+
>>> for i, (f, n) in enumerate(zip(basis, notes[:12])):
|
543 |
+
... f_scale = librosa.util.normalize(f) / 2
|
544 |
+
... ax[0].plot(i + f_scale.real)
|
545 |
+
... ax[0].plot(i + f_scale.imag, linestyle=':')
|
546 |
+
>>> ax[0].set(yticks=np.arange(len(notes[:12])), yticklabels=notes[:12],
|
547 |
+
... ylabel='CQ filters',
|
548 |
+
... title='CQ filters (one octave, time domain)',
|
549 |
+
... xlabel='Time (samples at 22050 Hz)')
|
550 |
+
>>> ax[0].legend(['Real', 'Imaginary'])
|
551 |
+
>>> F = np.abs(np.fft.fftn(basis, axes=[-1]))
|
552 |
+
>>> # Keep only the positive frequencies
|
553 |
+
>>> F = F[:, :(1 + F.shape[1] // 2)]
|
554 |
+
>>> librosa.display.specshow(F, x_axis='linear', y_axis='cqt_note', ax=ax[1])
|
555 |
+
>>> ax[1].set(ylabel='CQ filters', title='CQ filter magnitudes (frequency domain)')
|
556 |
+
"""
|
557 |
+
|
558 |
+
if fmin is None:
|
559 |
+
fmin = note_to_hz("C1")
|
560 |
+
|
561 |
+
# Pass-through parameters to get the filter lengths
|
562 |
+
lengths = constant_q_lengths(
|
563 |
+
sr=sr,
|
564 |
+
fmin=fmin,
|
565 |
+
n_bins=n_bins,
|
566 |
+
bins_per_octave=bins_per_octave,
|
567 |
+
window=window,
|
568 |
+
filter_scale=filter_scale,
|
569 |
+
gamma=gamma,
|
570 |
+
)
|
571 |
+
|
572 |
+
freqs = fmin * (2.0 ** (np.arange(n_bins, dtype=float) / bins_per_octave))
|
573 |
+
|
574 |
+
# Build the filters
|
575 |
+
filters = []
|
576 |
+
for ilen, freq in zip(lengths, freqs):
|
577 |
+
# Build the filter: note, length will be ceil(ilen)
|
578 |
+
sig = util.phasor(
|
579 |
+
np.arange(-ilen // 2, ilen // 2, dtype=float) * 2 * np.pi * freq / sr
|
580 |
+
)
|
581 |
+
|
582 |
+
# Apply the windowing function
|
583 |
+
sig = sig * __float_window(window)(len(sig))
|
584 |
+
|
585 |
+
# Normalize
|
586 |
+
sig = util.normalize(sig, norm=norm)
|
587 |
+
|
588 |
+
filters.append(sig)
|
589 |
+
|
590 |
+
# Pad and stack
|
591 |
+
max_len = max(lengths)
|
592 |
+
if pad_fft:
|
593 |
+
max_len = int(2.0 ** (np.ceil(np.log2(max_len))))
|
594 |
+
else:
|
595 |
+
max_len = int(np.ceil(max_len))
|
596 |
+
|
597 |
+
filters = np.asarray(
|
598 |
+
[util.pad_center(filt, size=max_len, **kwargs) for filt in filters], dtype=dtype
|
599 |
+
)
|
600 |
+
|
601 |
+
return filters, np.asarray(lengths)
|
602 |
+
|
603 |
+
|
604 |
+
@deprecated(version="0.9.0", version_removed="1.0")
|
605 |
+
@cache(level=10)
|
606 |
+
def constant_q_lengths(
|
607 |
+
*,
|
608 |
+
sr: float,
|
609 |
+
fmin: _FloatLike_co,
|
610 |
+
n_bins: int = 84,
|
611 |
+
bins_per_octave: int = 12,
|
612 |
+
window: _WindowSpec = "hann",
|
613 |
+
filter_scale: float = 1,
|
614 |
+
gamma: float = 0,
|
615 |
+
) -> np.ndarray:
|
616 |
+
r"""Return length of each filter in a constant-Q basis.
|
617 |
+
|
618 |
+
.. warning:: This function is deprecated as of v0.9 and will be removed in 1.0.
|
619 |
+
See `librosa.filters.wavelet_lengths`.
|
620 |
+
|
621 |
+
Parameters
|
622 |
+
----------
|
623 |
+
sr : number > 0 [scalar]
|
624 |
+
Audio sampling rate
|
625 |
+
fmin : float > 0 [scalar]
|
626 |
+
Minimum frequency bin.
|
627 |
+
n_bins : int > 0 [scalar]
|
628 |
+
Number of frequencies. Defaults to 7 octaves (84 bins).
|
629 |
+
bins_per_octave : int > 0 [scalar]
|
630 |
+
Number of bins per octave
|
631 |
+
window : str or callable
|
632 |
+
Window function to use on filters
|
633 |
+
filter_scale : float > 0 [scalar]
|
634 |
+
Resolution of filter windows. Larger values use longer windows.
|
635 |
+
gamma : number >= 0
|
636 |
+
Bandwidth offset for variable-Q transforms.
|
637 |
+
``gamma=0`` produces a constant-Q filterbank.
|
638 |
+
|
639 |
+
Returns
|
640 |
+
-------
|
641 |
+
lengths : np.ndarray
|
642 |
+
The length of each filter.
|
643 |
+
|
644 |
+
Notes
|
645 |
+
-----
|
646 |
+
This function caches at level 10.
|
647 |
+
|
648 |
+
See Also
|
649 |
+
--------
|
650 |
+
wavelet_lengths
|
651 |
+
"""
|
652 |
+
|
653 |
+
if fmin <= 0:
|
654 |
+
raise ParameterError("fmin must be strictly positive")
|
655 |
+
|
656 |
+
if bins_per_octave <= 0:
|
657 |
+
raise ParameterError("bins_per_octave must be positive")
|
658 |
+
|
659 |
+
if filter_scale <= 0:
|
660 |
+
raise ParameterError("filter_scale must be positive")
|
661 |
+
|
662 |
+
if n_bins <= 0 or not isinstance(n_bins, (int, np.integer)):
|
663 |
+
raise ParameterError("n_bins must be a positive integer")
|
664 |
+
|
665 |
+
# Compute the frequencies
|
666 |
+
freq = fmin * (2.0 ** (np.arange(n_bins, dtype=float) / bins_per_octave))
|
667 |
+
|
668 |
+
# Q should be capitalized here, so we suppress the name warning
|
669 |
+
# pylint: disable=invalid-name
|
670 |
+
#
|
671 |
+
# Balance filter bandwidths
|
672 |
+
alpha = (2.0 ** (2 / bins_per_octave) - 1) / (2.0 ** (2 / bins_per_octave) + 1)
|
673 |
+
Q = float(filter_scale) / alpha
|
674 |
+
|
675 |
+
if max(freq * (1 + 0.5 * window_bandwidth(window) / Q)) > sr / 2.0:
|
676 |
+
raise ParameterError(
|
677 |
+
f"Maximum filter frequency={max(freq):.2f} would exceed Nyquist={sr/2}"
|
678 |
+
)
|
679 |
+
|
680 |
+
# Convert frequencies to filter lengths
|
681 |
+
lengths: np.ndarray = Q * sr / (freq + gamma / alpha)
|
682 |
+
|
683 |
+
return lengths
|
684 |
+
|
685 |
+
|
686 |
+
@cache(level=10)
|
687 |
+
def wavelet_lengths(
|
688 |
+
*,
|
689 |
+
freqs: ArrayLike,
|
690 |
+
sr: float = 22050,
|
691 |
+
window: _WindowSpec = "hann",
|
692 |
+
filter_scale: float = 1,
|
693 |
+
gamma: Optional[float] = 0,
|
694 |
+
alpha: Optional[Union[float, np.ndarray]] = None,
|
695 |
+
) -> Tuple[np.ndarray, float]:
|
696 |
+
"""Return length of each filter in a wavelet basis.
|
697 |
+
|
698 |
+
Parameters
|
699 |
+
----------
|
700 |
+
freqs : np.ndarray (positive)
|
701 |
+
Center frequencies of the filters (in Hz).
|
702 |
+
Must be in ascending order.
|
703 |
+
|
704 |
+
sr : number > 0 [scalar]
|
705 |
+
Audio sampling rate
|
706 |
+
|
707 |
+
window : str or callable
|
708 |
+
Window function to use on filters
|
709 |
+
|
710 |
+
filter_scale : float > 0 [scalar]
|
711 |
+
Resolution of filter windows. Larger values use longer windows.
|
712 |
+
|
713 |
+
gamma : number >= 0 [scalar, optional]
|
714 |
+
Bandwidth offset for determining filter lengths, as used in
|
715 |
+
Variable-Q transforms.
|
716 |
+
|
717 |
+
Bandwidth for the k'th filter is determined by::
|
718 |
+
|
719 |
+
B[k] = alpha[k] * freqs[k] + gamma
|
720 |
+
|
721 |
+
``alpha[k]`` is twice the relative difference between ``freqs[k+1]`` and ``freqs[k-1]``::
|
722 |
+
|
723 |
+
alpha[k] = (freqs[k+1]-freqs[k-1]) / (freqs[k+1]+freqs[k-1])
|
724 |
+
|
725 |
+
If ``freqs`` follows a geometric progression (as in CQT and VQT), the vector
|
726 |
+
``alpha`` is constant and such that::
|
727 |
+
|
728 |
+
(1 + alpha) * freqs[k-1] = (1 - alpha) * freqs[k+1]
|
729 |
+
|
730 |
+
Furthermore, if ``gamma=0`` (default), ``alpha`` is such that even-``k`` and
|
731 |
+
odd-``k`` filters are interleaved::
|
732 |
+
|
733 |
+
freqs[k-1] + B[k-1] = freqs[k+1] - B[k+1]
|
734 |
+
|
735 |
+
If ``gamma=None`` is specified, then ``gamma`` is computed such
|
736 |
+
that each filter has bandwidth proportional to the equivalent
|
737 |
+
rectangular bandwidth (ERB) at frequency ``freqs[k]``::
|
738 |
+
|
739 |
+
gamma[k] = 24.7 * alpha[k] / 0.108
|
740 |
+
|
741 |
+
as derived by [#]_.
|
742 |
+
|
743 |
+
.. [#] Glasberg, Brian R., and Brian CJ Moore.
|
744 |
+
"Derivation of auditory filter shapes from notched-noise data."
|
745 |
+
Hearing research 47.1-2 (1990): 103-138.
|
746 |
+
|
747 |
+
alpha : number > 0 [optional]
|
748 |
+
If only one frequency is provided (``len(freqs)==1``), then filter bandwidth
|
749 |
+
cannot be computed. In that case, the ``alpha`` parameter described above
|
750 |
+
can be explicitly specified here.
|
751 |
+
|
752 |
+
If two or more frequencies are provided, this parameter is ignored.
|
753 |
+
|
754 |
+
Returns
|
755 |
+
-------
|
756 |
+
lengths : np.ndarray
|
757 |
+
The length of each filter.
|
758 |
+
f_cutoff : float
|
759 |
+
The lowest frequency at which all filters' main lobes have decayed by
|
760 |
+
at least 3dB.
|
761 |
+
|
762 |
+
This second output serves in cqt and vqt to ensure that all wavelet
|
763 |
+
bands remain below the Nyquist frequency.
|
764 |
+
|
765 |
+
Notes
|
766 |
+
-----
|
767 |
+
This function caches at level 10.
|
768 |
+
|
769 |
+
Raises
|
770 |
+
------
|
771 |
+
ParameterError
|
772 |
+
- If ``filter_scale`` is not strictly positive
|
773 |
+
|
774 |
+
- If ``gamma`` is a negative number
|
775 |
+
|
776 |
+
- If any frequencies are <= 0
|
777 |
+
|
778 |
+
- If the frequency array is not sorted in ascending order
|
779 |
+
"""
|
780 |
+
freqs = np.asarray(freqs)
|
781 |
+
if filter_scale <= 0:
|
782 |
+
raise ParameterError(f"filter_scale={filter_scale} must be positive")
|
783 |
+
|
784 |
+
if gamma is not None and gamma < 0:
|
785 |
+
raise ParameterError(f"gamma={gamma} must be non-negative")
|
786 |
+
|
787 |
+
if np.any(freqs <= 0):
|
788 |
+
raise ParameterError("frequencies must be strictly positive")
|
789 |
+
|
790 |
+
if len(freqs) > 1 and np.any(freqs[:-1] > freqs[1:]):
|
791 |
+
raise ParameterError(
|
792 |
+
f"Frequency array={freqs} must be in strictly ascending order"
|
793 |
+
)
|
794 |
+
|
795 |
+
# We need at least 2 frequencies to infer alpha
|
796 |
+
if len(freqs) > 1:
|
797 |
+
# Approximate the local octave resolution
|
798 |
+
bpo = np.empty(len(freqs))
|
799 |
+
logf = np.log2(freqs)
|
800 |
+
bpo[0] = 1 / (logf[1] - logf[0])
|
801 |
+
bpo[-1] = 1 / (logf[-1] - logf[-2])
|
802 |
+
bpo[1:-1] = 2 / (logf[2:] - logf[:-2])
|
803 |
+
|
804 |
+
alpha = (2.0 ** (2 / bpo) - 1) / (2.0 ** (2 / bpo) + 1)
|
805 |
+
if alpha is None:
|
806 |
+
raise ParameterError(
|
807 |
+
"Cannot construct a wavelet basis for a single frequency if alpha is not provided"
|
808 |
+
)
|
809 |
+
|
810 |
+
gamma_: Union[_FloatLike_co, np.ndarray]
|
811 |
+
if gamma is None:
|
812 |
+
gamma_ = alpha * 24.7 / 0.108
|
813 |
+
else:
|
814 |
+
gamma_ = gamma
|
815 |
+
# Q should be capitalized here, so we suppress the name warning
|
816 |
+
# pylint: disable=invalid-name
|
817 |
+
Q = float(filter_scale) / alpha
|
818 |
+
|
819 |
+
# How far up does our highest frequency reach?
|
820 |
+
f_cutoff = max(freqs * (1 + 0.5 * window_bandwidth(window) / Q) + 0.5 * gamma_)
|
821 |
+
|
822 |
+
# Convert frequencies to filter lengths
|
823 |
+
lengths = Q * sr / (freqs + gamma_ / alpha)
|
824 |
+
|
825 |
+
return lengths, f_cutoff
|
826 |
+
|
827 |
+
|
828 |
+
@cache(level=10)
|
829 |
+
def wavelet(
|
830 |
+
*,
|
831 |
+
freqs: np.ndarray,
|
832 |
+
sr: float = 22050,
|
833 |
+
window: _WindowSpec = "hann",
|
834 |
+
filter_scale: float = 1,
|
835 |
+
pad_fft: bool = True,
|
836 |
+
norm: Optional[float] = 1,
|
837 |
+
dtype: DTypeLike = np.complex64,
|
838 |
+
gamma: float = 0,
|
839 |
+
alpha: Optional[float] = None,
|
840 |
+
**kwargs: Any,
|
841 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
842 |
+
"""Construct a wavelet basis using windowed complex sinusoids.
|
843 |
+
|
844 |
+
This function constructs a wavelet filterbank at a specified set of center
|
845 |
+
frequencies.
|
846 |
+
|
847 |
+
Parameters
|
848 |
+
----------
|
849 |
+
freqs : np.ndarray (positive)
|
850 |
+
Center frequencies of the filters (in Hz).
|
851 |
+
Must be in ascending order.
|
852 |
+
|
853 |
+
sr : number > 0 [scalar]
|
854 |
+
Audio sampling rate
|
855 |
+
|
856 |
+
window : string, tuple, number, or function
|
857 |
+
Windowing function to apply to filters.
|
858 |
+
|
859 |
+
filter_scale : float > 0 [scalar]
|
860 |
+
Scale of filter windows.
|
861 |
+
Small values (<1) use shorter windows for higher temporal resolution.
|
862 |
+
|
863 |
+
pad_fft : boolean
|
864 |
+
Center-pad all filters up to the nearest integral power of 2.
|
865 |
+
|
866 |
+
By default, padding is done with zeros, but this can be overridden
|
867 |
+
by setting the ``mode=`` field in *kwargs*.
|
868 |
+
|
869 |
+
norm : {inf, -inf, 0, float > 0}
|
870 |
+
Type of norm to use for basis function normalization.
|
871 |
+
See librosa.util.normalize
|
872 |
+
|
873 |
+
gamma : number >= 0
|
874 |
+
Bandwidth offset for variable-Q transforms.
|
875 |
+
|
876 |
+
dtype : np.dtype
|
877 |
+
The data type of the output basis.
|
878 |
+
By default, uses 64-bit (single precision) complex floating point.
|
879 |
+
|
880 |
+
alpha : number > 0 [optional]
|
881 |
+
If only one frequency is provided (``len(freqs)==1``), then filter bandwidth
|
882 |
+
cannot be computed. In that case, the ``alpha`` parameter described above
|
883 |
+
can be explicitly specified here.
|
884 |
+
|
885 |
+
If two or more frequencies are provided, this parameter is ignored.
|
886 |
+
|
887 |
+
**kwargs : additional keyword arguments
|
888 |
+
Arguments to `np.pad()` when ``pad==True``.
|
889 |
+
|
890 |
+
Returns
|
891 |
+
-------
|
892 |
+
filters : np.ndarray, ``len(filters) == n_bins``
|
893 |
+
each ``filters[i]`` is a (complex) time-domain filter
|
894 |
+
lengths : np.ndarray, ``len(lengths) == n_bins``
|
895 |
+
The (fractional) length of each filter in samples
|
896 |
+
|
897 |
+
Notes
|
898 |
+
-----
|
899 |
+
This function caches at level 10.
|
900 |
+
|
901 |
+
See Also
|
902 |
+
--------
|
903 |
+
wavelet_lengths
|
904 |
+
librosa.cqt
|
905 |
+
librosa.vqt
|
906 |
+
librosa.util.normalize
|
907 |
+
|
908 |
+
Examples
|
909 |
+
--------
|
910 |
+
Create a constant-Q basis
|
911 |
+
|
912 |
+
>>> freqs = librosa.cqt_frequencies(n_bins=84, fmin=librosa.note_to_hz('C1'))
|
913 |
+
>>> basis, lengths = librosa.filters.wavelet(freqs=freqs, sr=22050)
|
914 |
+
|
915 |
+
Plot one octave of filters in time and frequency
|
916 |
+
|
917 |
+
>>> import matplotlib.pyplot as plt
|
918 |
+
>>> basis, lengths = librosa.filters.wavelet(freqs=freqs, sr=22050)
|
919 |
+
>>> fig, ax = plt.subplots(nrows=2, figsize=(10, 6))
|
920 |
+
>>> notes = librosa.midi_to_note(np.arange(24, 24 + len(basis)))
|
921 |
+
>>> for i, (f, n) in enumerate(zip(basis, notes[:12])):
|
922 |
+
... f_scale = librosa.util.normalize(f) / 2
|
923 |
+
... ax[0].plot(i + f_scale.real)
|
924 |
+
... ax[0].plot(i + f_scale.imag, linestyle=':')
|
925 |
+
>>> ax[0].set(yticks=np.arange(len(notes[:12])), yticklabels=notes[:12],
|
926 |
+
... ylabel='CQ filters',
|
927 |
+
... title='CQ filters (one octave, time domain)',
|
928 |
+
... xlabel='Time (samples at 22050 Hz)')
|
929 |
+
>>> ax[0].legend(['Real', 'Imaginary'])
|
930 |
+
>>> F = np.abs(np.fft.fftn(basis, axes=[-1]))
|
931 |
+
>>> # Keep only the positive frequencies
|
932 |
+
>>> F = F[:, :(1 + F.shape[1] // 2)]
|
933 |
+
>>> librosa.display.specshow(F, x_axis='linear', y_axis='cqt_note', ax=ax[1])
|
934 |
+
>>> ax[1].set(ylabel='CQ filters', title='CQ filter magnitudes (frequency domain)')
|
935 |
+
"""
|
936 |
+
|
937 |
+
# Pass-through parameters to get the filter lengths
|
938 |
+
lengths, _ = wavelet_lengths(
|
939 |
+
freqs=freqs,
|
940 |
+
sr=sr,
|
941 |
+
window=window,
|
942 |
+
filter_scale=filter_scale,
|
943 |
+
gamma=gamma,
|
944 |
+
alpha=alpha,
|
945 |
+
)
|
946 |
+
|
947 |
+
# Build the filters
|
948 |
+
filters = []
|
949 |
+
for ilen, freq in zip(lengths, freqs):
|
950 |
+
# Build the filter: note, length will be ceil(ilen)
|
951 |
+
sig = util.phasor(
|
952 |
+
np.arange(-ilen // 2, ilen // 2, dtype=float) * 2 * np.pi * freq / sr
|
953 |
+
)
|
954 |
+
|
955 |
+
# Apply the windowing function
|
956 |
+
sig *= __float_window(window)(len(sig))
|
957 |
+
|
958 |
+
# Normalize
|
959 |
+
sig = util.normalize(sig, norm=norm)
|
960 |
+
|
961 |
+
filters.append(sig)
|
962 |
+
|
963 |
+
# Pad and stack
|
964 |
+
max_len = max(lengths)
|
965 |
+
if pad_fft:
|
966 |
+
max_len = int(2.0 ** (np.ceil(np.log2(max_len))))
|
967 |
+
else:
|
968 |
+
max_len = int(np.ceil(max_len))
|
969 |
+
|
970 |
+
filters = np.asarray(
|
971 |
+
[util.pad_center(filt, size=max_len, **kwargs) for filt in filters], dtype=dtype
|
972 |
+
)
|
973 |
+
|
974 |
+
return filters, lengths
|
975 |
+
|
976 |
+
|
977 |
+
@cache(level=10)
|
978 |
+
def cq_to_chroma(
|
979 |
+
n_input: int,
|
980 |
+
*,
|
981 |
+
bins_per_octave: int = 12,
|
982 |
+
n_chroma: int = 12,
|
983 |
+
fmin: Optional[_FloatLike_co] = None,
|
984 |
+
window: Optional[np.ndarray] = None,
|
985 |
+
base_c: bool = True,
|
986 |
+
dtype: DTypeLike = np.float32,
|
987 |
+
) -> np.ndarray:
|
988 |
+
"""Construct a linear transformation matrix to map Constant-Q bins
|
989 |
+
onto chroma bins (i.e., pitch classes).
|
990 |
+
|
991 |
+
Parameters
|
992 |
+
----------
|
993 |
+
n_input : int > 0 [scalar]
|
994 |
+
Number of input components (CQT bins)
|
995 |
+
bins_per_octave : int > 0 [scalar]
|
996 |
+
How many bins per octave in the CQT
|
997 |
+
n_chroma : int > 0 [scalar]
|
998 |
+
Number of output bins (per octave) in the chroma
|
999 |
+
fmin : None or float > 0
|
1000 |
+
Center frequency of the first constant-Q channel.
|
1001 |
+
Default: 'C1' ~= 32.7 Hz
|
1002 |
+
window : None or np.ndarray
|
1003 |
+
If provided, the cq_to_chroma filter bank will be
|
1004 |
+
convolved with ``window``.
|
1005 |
+
base_c : bool
|
1006 |
+
If True, the first chroma bin will start at 'C'
|
1007 |
+
If False, the first chroma bin will start at 'A'
|
1008 |
+
dtype : np.dtype
|
1009 |
+
The data type of the output basis.
|
1010 |
+
By default, uses 32-bit (single-precision) floating point.
|
1011 |
+
|
1012 |
+
Returns
|
1013 |
+
-------
|
1014 |
+
cq_to_chroma : np.ndarray [shape=(n_chroma, n_input)]
|
1015 |
+
Transformation matrix: ``Chroma = np.dot(cq_to_chroma, CQT)``
|
1016 |
+
|
1017 |
+
Raises
|
1018 |
+
------
|
1019 |
+
ParameterError
|
1020 |
+
If ``n_input`` is not an integer multiple of ``n_chroma``
|
1021 |
+
|
1022 |
+
Notes
|
1023 |
+
-----
|
1024 |
+
This function caches at level 10.
|
1025 |
+
|
1026 |
+
Examples
|
1027 |
+
--------
|
1028 |
+
Get a CQT, and wrap bins to chroma
|
1029 |
+
|
1030 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
1031 |
+
>>> CQT = np.abs(librosa.cqt(y, sr=sr))
|
1032 |
+
>>> chroma_map = librosa.filters.cq_to_chroma(CQT.shape[0])
|
1033 |
+
>>> chromagram = chroma_map.dot(CQT)
|
1034 |
+
>>> # Max-normalize each time step
|
1035 |
+
>>> chromagram = librosa.util.normalize(chromagram, axis=0)
|
1036 |
+
|
1037 |
+
>>> import matplotlib.pyplot as plt
|
1038 |
+
>>> fig, ax = plt.subplots(nrows=3, sharex=True)
|
1039 |
+
>>> imgcq = librosa.display.specshow(librosa.amplitude_to_db(CQT,
|
1040 |
+
... ref=np.max),
|
1041 |
+
... y_axis='cqt_note', x_axis='time',
|
1042 |
+
... ax=ax[0])
|
1043 |
+
>>> ax[0].set(title='CQT Power')
|
1044 |
+
>>> ax[0].label_outer()
|
1045 |
+
>>> librosa.display.specshow(chromagram, y_axis='chroma', x_axis='time',
|
1046 |
+
... ax=ax[1])
|
1047 |
+
>>> ax[1].set(title='Chroma (wrapped CQT)')
|
1048 |
+
>>> ax[1].label_outer()
|
1049 |
+
>>> chroma = librosa.feature.chroma_stft(y=y, sr=sr)
|
1050 |
+
>>> imgchroma = librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax[2])
|
1051 |
+
>>> ax[2].set(title='librosa.feature.chroma_stft')
|
1052 |
+
"""
|
1053 |
+
|
1054 |
+
# How many fractional bins are we merging?
|
1055 |
+
n_merge = float(bins_per_octave) / n_chroma
|
1056 |
+
|
1057 |
+
fmin_: _FloatLike_co
|
1058 |
+
if fmin is None:
|
1059 |
+
fmin_ = note_to_hz("C1")
|
1060 |
+
else:
|
1061 |
+
fmin_ = fmin
|
1062 |
+
|
1063 |
+
if np.mod(n_merge, 1) != 0:
|
1064 |
+
raise ParameterError(
|
1065 |
+
"Incompatible CQ merge: "
|
1066 |
+
"input bins must be an "
|
1067 |
+
"integer multiple of output bins."
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
# Tile the identity to merge fractional bins
|
1071 |
+
cq_to_ch = np.repeat(np.eye(n_chroma), int(n_merge), axis=1)
|
1072 |
+
|
1073 |
+
# Roll it left to center on the target bin
|
1074 |
+
cq_to_ch = np.roll(cq_to_ch, -int(n_merge // 2), axis=1)
|
1075 |
+
|
1076 |
+
# How many octaves are we repeating?
|
1077 |
+
n_octaves = np.ceil(float(n_input) / bins_per_octave)
|
1078 |
+
|
1079 |
+
# Repeat and trim
|
1080 |
+
cq_to_ch = np.tile(cq_to_ch, int(n_octaves))[:, :n_input]
|
1081 |
+
|
1082 |
+
# What's the note number of the first bin in the CQT?
|
1083 |
+
# midi uses 12 bins per octave here
|
1084 |
+
midi_0 = np.mod(hz_to_midi(fmin_), 12)
|
1085 |
+
|
1086 |
+
if base_c:
|
1087 |
+
# rotate to C
|
1088 |
+
roll = midi_0
|
1089 |
+
else:
|
1090 |
+
# rotate to A
|
1091 |
+
roll = midi_0 - 9
|
1092 |
+
|
1093 |
+
# Adjust the roll in terms of how many chroma we want out
|
1094 |
+
# We need to be careful with rounding here
|
1095 |
+
roll = int(np.round(roll * (n_chroma / 12.0)))
|
1096 |
+
|
1097 |
+
# Apply the roll
|
1098 |
+
cq_to_ch = np.roll(cq_to_ch, roll, axis=0).astype(dtype)
|
1099 |
+
|
1100 |
+
if window is not None:
|
1101 |
+
cq_to_ch = scipy.signal.convolve(cq_to_ch, np.atleast_2d(window), mode="same")
|
1102 |
+
|
1103 |
+
return cq_to_ch
|
1104 |
+
|
1105 |
+
|
1106 |
+
@cache(level=10)
|
1107 |
+
def window_bandwidth(window: _WindowSpec, n: int = 1000) -> float:
|
1108 |
+
"""Get the equivalent noise bandwidth (ENBW) of a window function.
|
1109 |
+
|
1110 |
+
The ENBW of a window is defined by [#]_ (equation 11) as the normalized
|
1111 |
+
ratio of the sum of squares to the square of sums::
|
1112 |
+
|
1113 |
+
enbw = n * sum(window**2) / sum(window)**2
|
1114 |
+
|
1115 |
+
.. [#] Harris, F. J.
|
1116 |
+
"On the use of windows for harmonic analysis with the discrete Fourier transform."
|
1117 |
+
Proceedings of the IEEE, 66(1), 51-83. 1978.
|
1118 |
+
|
1119 |
+
Parameters
|
1120 |
+
----------
|
1121 |
+
window : callable or string
|
1122 |
+
A window function, or the name of a window function.
|
1123 |
+
Examples:
|
1124 |
+
- scipy.signal.hann
|
1125 |
+
- 'boxcar'
|
1126 |
+
n : int > 0
|
1127 |
+
The number of coefficients to use in estimating the
|
1128 |
+
window bandwidth
|
1129 |
+
|
1130 |
+
Returns
|
1131 |
+
-------
|
1132 |
+
bandwidth : float
|
1133 |
+
The equivalent noise bandwidth (in FFT bins) of the
|
1134 |
+
given window function
|
1135 |
+
|
1136 |
+
Notes
|
1137 |
+
-----
|
1138 |
+
This function caches at level 10.
|
1139 |
+
|
1140 |
+
See Also
|
1141 |
+
--------
|
1142 |
+
get_window
|
1143 |
+
"""
|
1144 |
+
|
1145 |
+
if hasattr(window, "__name__"):
|
1146 |
+
key = window.__name__
|
1147 |
+
else:
|
1148 |
+
key = window
|
1149 |
+
|
1150 |
+
if key not in WINDOW_BANDWIDTHS:
|
1151 |
+
win = get_window(window, n)
|
1152 |
+
WINDOW_BANDWIDTHS[key] = (
|
1153 |
+
n * np.sum(win**2) / (np.sum(win) ** 2 + util.tiny(win))
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
return WINDOW_BANDWIDTHS[key]
|
1157 |
+
|
1158 |
+
|
1159 |
+
@cache(level=10)
|
1160 |
+
def get_window(
|
1161 |
+
window: _WindowSpec,
|
1162 |
+
Nx: int,
|
1163 |
+
*,
|
1164 |
+
fftbins: Optional[bool] = True,
|
1165 |
+
) -> np.ndarray:
|
1166 |
+
"""Compute a window function.
|
1167 |
+
|
1168 |
+
This is a wrapper for `scipy.signal.get_window` that additionally
|
1169 |
+
supports callable or pre-computed windows.
|
1170 |
+
|
1171 |
+
Parameters
|
1172 |
+
----------
|
1173 |
+
window : string, tuple, number, callable, or list-like
|
1174 |
+
The window specification:
|
1175 |
+
|
1176 |
+
- If string, it's the name of the window function (e.g., `'hann'`)
|
1177 |
+
- If tuple, it's the name of the window function and any parameters
|
1178 |
+
(e.g., `('kaiser', 4.0)`)
|
1179 |
+
- If numeric, it is treated as the beta parameter of the `'kaiser'`
|
1180 |
+
window, as in `scipy.signal.get_window`.
|
1181 |
+
- If callable, it's a function that accepts one integer argument
|
1182 |
+
(the window length)
|
1183 |
+
- If list-like, it's a pre-computed window of the correct length `Nx`
|
1184 |
+
|
1185 |
+
Nx : int > 0
|
1186 |
+
The length of the window
|
1187 |
+
|
1188 |
+
fftbins : bool, optional
|
1189 |
+
If True (default), create a periodic window for use with FFT
|
1190 |
+
If False, create a symmetric window for filter design applications.
|
1191 |
+
|
1192 |
+
Returns
|
1193 |
+
-------
|
1194 |
+
get_window : np.ndarray
|
1195 |
+
A window of length `Nx` and type `window`
|
1196 |
+
|
1197 |
+
See Also
|
1198 |
+
--------
|
1199 |
+
scipy.signal.get_window
|
1200 |
+
|
1201 |
+
Notes
|
1202 |
+
-----
|
1203 |
+
This function caches at level 10.
|
1204 |
+
|
1205 |
+
Raises
|
1206 |
+
------
|
1207 |
+
ParameterError
|
1208 |
+
If `window` is supplied as a vector of length != `n_fft`,
|
1209 |
+
or is otherwise mis-specified.
|
1210 |
+
"""
|
1211 |
+
if callable(window):
|
1212 |
+
return window(Nx)
|
1213 |
+
|
1214 |
+
elif isinstance(window, (str, tuple)) or np.isscalar(window):
|
1215 |
+
# TODO: if we add custom window functions in librosa, call them here
|
1216 |
+
|
1217 |
+
win: np.ndarray = scipy.signal.get_window(window, Nx, fftbins=fftbins)
|
1218 |
+
return win
|
1219 |
+
|
1220 |
+
elif isinstance(window, (np.ndarray, list)):
|
1221 |
+
if len(window) == Nx:
|
1222 |
+
return np.asarray(window)
|
1223 |
+
|
1224 |
+
raise ParameterError(f"Window size mismatch: {len(window):d} != {Nx:d}")
|
1225 |
+
else:
|
1226 |
+
raise ParameterError(f"Invalid window specification: {window!r}")
|
1227 |
+
|
1228 |
+
|
1229 |
+
@cache(level=10)
|
1230 |
+
def _multirate_fb(
|
1231 |
+
center_freqs: Optional[np.ndarray] = None,
|
1232 |
+
sample_rates: Optional[np.ndarray] = None,
|
1233 |
+
Q: float = 25.0,
|
1234 |
+
passband_ripple: float = 1,
|
1235 |
+
stopband_attenuation: float = 50,
|
1236 |
+
ftype: str = "ellip",
|
1237 |
+
flayout: str = "sos",
|
1238 |
+
) -> Tuple[List[Any], np.ndarray]:
|
1239 |
+
r"""Helper function to construct a multirate filterbank.
|
1240 |
+
|
1241 |
+
A filter bank consists of multiple band-pass filters which divide the input signal
|
1242 |
+
into subbands. In the case of a multirate filter bank, the band-pass filters
|
1243 |
+
operate with resampled versions of the input signal, e.g. to keep the length
|
1244 |
+
of a filter constant while shifting its center frequency.
|
1245 |
+
|
1246 |
+
This implementation uses `scipy.signal.iirdesign` to design the filters.
|
1247 |
+
|
1248 |
+
Parameters
|
1249 |
+
----------
|
1250 |
+
center_freqs : np.ndarray [shape=(n,), dtype=float]
|
1251 |
+
Center frequencies of the filter kernels.
|
1252 |
+
Also defines the number of filters in the filterbank.
|
1253 |
+
|
1254 |
+
sample_rates : np.ndarray [shape=(n,), dtype=float]
|
1255 |
+
Samplerate for each filter (used for multirate filterbank).
|
1256 |
+
|
1257 |
+
Q : float
|
1258 |
+
Q factor (influences the filter bandwidth).
|
1259 |
+
|
1260 |
+
passband_ripple : float
|
1261 |
+
The maximum loss in the passband (dB)
|
1262 |
+
See `scipy.signal.iirdesign` for details.
|
1263 |
+
|
1264 |
+
stopband_attenuation : float
|
1265 |
+
The minimum attenuation in the stopband (dB)
|
1266 |
+
See `scipy.signal.iirdesign` for details.
|
1267 |
+
|
1268 |
+
ftype : str
|
1269 |
+
The type of IIR filter to design
|
1270 |
+
See `scipy.signal.iirdesign` for details.
|
1271 |
+
|
1272 |
+
flayout : string
|
1273 |
+
Valid `output` argument for `scipy.signal.iirdesign`.
|
1274 |
+
|
1275 |
+
- If `ba`, returns numerators/denominators of the transfer functions,
|
1276 |
+
used for filtering with `scipy.signal.filtfilt`.
|
1277 |
+
Can be unstable for high-order filters.
|
1278 |
+
|
1279 |
+
- If `sos`, returns a series of second-order filters,
|
1280 |
+
used for filtering with `scipy.signal.sosfiltfilt`.
|
1281 |
+
Minimizes numerical precision errors for high-order filters, but is slower.
|
1282 |
+
|
1283 |
+
- If `zpk`, returns zeros, poles, and system gains of the transfer functions.
|
1284 |
+
|
1285 |
+
Returns
|
1286 |
+
-------
|
1287 |
+
filterbank : list [shape=(n,), dtype=float]
|
1288 |
+
Each list entry comprises the filter coefficients for a single filter.
|
1289 |
+
sample_rates : np.ndarray [shape=(n,), dtype=float]
|
1290 |
+
Samplerate for each filter.
|
1291 |
+
|
1292 |
+
Notes
|
1293 |
+
-----
|
1294 |
+
This function caches at level 10.
|
1295 |
+
|
1296 |
+
See Also
|
1297 |
+
--------
|
1298 |
+
scipy.signal.iirdesign
|
1299 |
+
|
1300 |
+
Raises
|
1301 |
+
------
|
1302 |
+
ParameterError
|
1303 |
+
If ``center_freqs`` is ``None``.
|
1304 |
+
If ``sample_rates`` is ``None``.
|
1305 |
+
If ``center_freqs.shape`` does not match ``sample_rates.shape``.
|
1306 |
+
"""
|
1307 |
+
|
1308 |
+
if center_freqs is None:
|
1309 |
+
raise ParameterError("center_freqs must be provided.")
|
1310 |
+
|
1311 |
+
if sample_rates is None:
|
1312 |
+
raise ParameterError("sample_rates must be provided.")
|
1313 |
+
|
1314 |
+
if center_freqs.shape != sample_rates.shape:
|
1315 |
+
raise ParameterError(
|
1316 |
+
"Number of provided center_freqs and sample_rates must be equal."
|
1317 |
+
)
|
1318 |
+
|
1319 |
+
nyquist = 0.5 * sample_rates
|
1320 |
+
filter_bandwidths = center_freqs / float(Q)
|
1321 |
+
|
1322 |
+
filterbank = []
|
1323 |
+
|
1324 |
+
for cur_center_freq, cur_nyquist, cur_bw in zip(
|
1325 |
+
center_freqs, nyquist, filter_bandwidths
|
1326 |
+
):
|
1327 |
+
passband_freqs = [
|
1328 |
+
cur_center_freq - 0.5 * cur_bw,
|
1329 |
+
cur_center_freq + 0.5 * cur_bw,
|
1330 |
+
] / cur_nyquist
|
1331 |
+
stopband_freqs = [
|
1332 |
+
cur_center_freq - cur_bw,
|
1333 |
+
cur_center_freq + cur_bw,
|
1334 |
+
] / cur_nyquist
|
1335 |
+
|
1336 |
+
cur_filter = scipy.signal.iirdesign(
|
1337 |
+
passband_freqs,
|
1338 |
+
stopband_freqs,
|
1339 |
+
passband_ripple,
|
1340 |
+
stopband_attenuation,
|
1341 |
+
analog=False,
|
1342 |
+
ftype=ftype,
|
1343 |
+
output=flayout,
|
1344 |
+
)
|
1345 |
+
|
1346 |
+
filterbank.append(cur_filter)
|
1347 |
+
|
1348 |
+
return filterbank, sample_rates
|
1349 |
+
|
1350 |
+
|
1351 |
+
@cache(level=10)
|
1352 |
+
def mr_frequencies(tuning: float) -> Tuple[np.ndarray, np.ndarray]:
|
1353 |
+
r"""Helper function for generating center frequency and sample rate pairs.
|
1354 |
+
|
1355 |
+
This function will return center frequency and corresponding sample rates
|
1356 |
+
to obtain similar pitch filterbank settings as described in [#]_.
|
1357 |
+
Instead of starting with MIDI pitch `A0`, we start with `C0`.
|
1358 |
+
|
1359 |
+
.. [#] Müller, Meinard.
|
1360 |
+
"Information Retrieval for Music and Motion."
|
1361 |
+
Springer Verlag. 2007.
|
1362 |
+
|
1363 |
+
Parameters
|
1364 |
+
----------
|
1365 |
+
tuning : float [scalar]
|
1366 |
+
Tuning deviation from A440, measure as a fraction of the equally
|
1367 |
+
tempered semitone (1/12 of an octave).
|
1368 |
+
|
1369 |
+
Returns
|
1370 |
+
-------
|
1371 |
+
center_freqs : np.ndarray [shape=(n,), dtype=float]
|
1372 |
+
Center frequencies of the filter kernels.
|
1373 |
+
Also defines the number of filters in the filterbank.
|
1374 |
+
sample_rates : np.ndarray [shape=(n,), dtype=float]
|
1375 |
+
Sample rate for each filter, used for multirate filterbank.
|
1376 |
+
|
1377 |
+
Notes
|
1378 |
+
-----
|
1379 |
+
This function caches at level 10.
|
1380 |
+
|
1381 |
+
See Also
|
1382 |
+
--------
|
1383 |
+
librosa.filters.semitone_filterbank
|
1384 |
+
"""
|
1385 |
+
|
1386 |
+
center_freqs = midi_to_hz(np.arange(24 + tuning, 109 + tuning))
|
1387 |
+
|
1388 |
+
sample_rates = np.asarray(
|
1389 |
+
len(np.arange(0, 36))
|
1390 |
+
* [
|
1391 |
+
882.0,
|
1392 |
+
]
|
1393 |
+
+ len(np.arange(36, 70))
|
1394 |
+
* [
|
1395 |
+
4410.0,
|
1396 |
+
]
|
1397 |
+
+ len(np.arange(70, 85))
|
1398 |
+
* [
|
1399 |
+
22050.0,
|
1400 |
+
]
|
1401 |
+
)
|
1402 |
+
|
1403 |
+
return center_freqs, sample_rates
|
1404 |
+
|
1405 |
+
|
1406 |
+
def semitone_filterbank(
|
1407 |
+
*,
|
1408 |
+
center_freqs: Optional[np.ndarray] = None,
|
1409 |
+
tuning: float = 0.0,
|
1410 |
+
sample_rates: Optional[np.ndarray] = None,
|
1411 |
+
flayout: str = "ba",
|
1412 |
+
**kwargs: Any,
|
1413 |
+
) -> Tuple[List[Any], np.ndarray]:
|
1414 |
+
r"""Construct a multi-rate bank of infinite-impulse response (IIR)
|
1415 |
+
band-pass filters at user-defined center frequencies and sample rates.
|
1416 |
+
|
1417 |
+
By default, these center frequencies are set equal to the 88 fundamental
|
1418 |
+
frequencies of the grand piano keyboard, according to a pitch tuning standard
|
1419 |
+
of A440, that is, note A above middle C set to 440 Hz. The center frequencies
|
1420 |
+
are tuned to the twelve-tone equal temperament, which means that they grow
|
1421 |
+
exponentially at a rate of 2**(1/12), that is, twelve notes per octave.
|
1422 |
+
|
1423 |
+
The A440 tuning can be changed by the user while keeping twelve-tone equal
|
1424 |
+
temperament. While A440 is currently the international standard in the music
|
1425 |
+
industry (ISO 16), some orchestras tune to A441-A445, whereas baroque musicians
|
1426 |
+
tune to A415.
|
1427 |
+
|
1428 |
+
See [#]_ for details.
|
1429 |
+
|
1430 |
+
.. [#] Müller, Meinard.
|
1431 |
+
"Information Retrieval for Music and Motion."
|
1432 |
+
Springer Verlag. 2007.
|
1433 |
+
|
1434 |
+
Parameters
|
1435 |
+
----------
|
1436 |
+
center_freqs : np.ndarray [shape=(n,), dtype=float]
|
1437 |
+
Center frequencies of the filter kernels.
|
1438 |
+
Also defines the number of filters in the filterbank.
|
1439 |
+
tuning : float [scalar]
|
1440 |
+
Tuning deviation from A440 as a fraction of a semitone (1/12 of an octave
|
1441 |
+
in equal temperament).
|
1442 |
+
sample_rates : np.ndarray [shape=(n,), dtype=float]
|
1443 |
+
Sample rates of each filter in the multirate filterbank.
|
1444 |
+
flayout : string
|
1445 |
+
- If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`.
|
1446 |
+
Can be unstable for high-order filters.
|
1447 |
+
- If `sos`, a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`.
|
1448 |
+
Minimizes numerical precision errors for high-order filters, but is slower.
|
1449 |
+
**kwargs : additional keyword arguments
|
1450 |
+
Additional arguments to the private function `_multirate_fb()`.
|
1451 |
+
|
1452 |
+
Returns
|
1453 |
+
-------
|
1454 |
+
filterbank : list [shape=(n,), dtype=float]
|
1455 |
+
Each list entry contains the filter coefficients for a single filter.
|
1456 |
+
fb_sample_rates : np.ndarray [shape=(n,), dtype=float]
|
1457 |
+
Sample rate for each filter.
|
1458 |
+
|
1459 |
+
See Also
|
1460 |
+
--------
|
1461 |
+
librosa.cqt
|
1462 |
+
librosa.iirt
|
1463 |
+
librosa.filters.mr_frequencies
|
1464 |
+
scipy.signal.iirdesign
|
1465 |
+
|
1466 |
+
Examples
|
1467 |
+
--------
|
1468 |
+
>>> import matplotlib.pyplot as plt
|
1469 |
+
>>> import numpy as np
|
1470 |
+
>>> import scipy.signal
|
1471 |
+
>>> semitone_filterbank, sample_rates = librosa.filters.semitone_filterbank(
|
1472 |
+
... center_freqs=librosa.midi_to_hz(np.arange(60, 72)),
|
1473 |
+
... sample_rates=np.repeat(4410.0, 12),
|
1474 |
+
... flayout='sos'
|
1475 |
+
... )
|
1476 |
+
>>> magnitudes = []
|
1477 |
+
>>> for cur_sr, cur_filter in zip(sample_rates, semitone_filterbank):
|
1478 |
+
... w, h = scipy.signal.sosfreqz(cur_filter,fs=cur_sr, worN=1025)
|
1479 |
+
... magnitudes.append(20 * np.log10(np.abs(h)))
|
1480 |
+
>>> fig, ax = plt.subplots(figsize=(12,6))
|
1481 |
+
>>> img = librosa.display.specshow(
|
1482 |
+
... np.array(magnitudes),
|
1483 |
+
... x_axis="hz",
|
1484 |
+
... sr=4410,
|
1485 |
+
... y_coords=librosa.midi_to_hz(np.arange(60, 72)),
|
1486 |
+
... vmin=-60,
|
1487 |
+
... vmax=3,
|
1488 |
+
... ax=ax
|
1489 |
+
... )
|
1490 |
+
>>> fig.colorbar(img, ax=ax, format="%+2.f dB", label="Magnitude (dB)")
|
1491 |
+
>>> ax.set(
|
1492 |
+
... xlim=[200, 600],
|
1493 |
+
... yticks=librosa.midi_to_hz(np.arange(60, 72)),
|
1494 |
+
... title='Magnitude Responses of the Pitch Filterbank',
|
1495 |
+
... xlabel='Frequency (Hz)',
|
1496 |
+
... ylabel='Semitone filter center frequency (Hz)'
|
1497 |
+
... )
|
1498 |
+
"""
|
1499 |
+
|
1500 |
+
if (center_freqs is None) and (sample_rates is None):
|
1501 |
+
center_freqs, sample_rates = mr_frequencies(tuning)
|
1502 |
+
|
1503 |
+
filterbank, fb_sample_rates = _multirate_fb(
|
1504 |
+
center_freqs=center_freqs, sample_rates=sample_rates, flayout=flayout, **kwargs
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
return filterbank, fb_sample_rates
|
1508 |
+
|
1509 |
+
|
1510 |
+
@jit(nopython=True, cache=False)
|
1511 |
+
def __window_ss_fill(x, win_sq, n_frames, hop_length): # pragma: no cover
|
1512 |
+
"""Helper function for window sum-square calculation."""
|
1513 |
+
|
1514 |
+
n = len(x)
|
1515 |
+
n_fft = len(win_sq)
|
1516 |
+
for i in range(n_frames):
|
1517 |
+
sample = i * hop_length
|
1518 |
+
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
|
1519 |
+
|
1520 |
+
|
1521 |
+
def window_sumsquare(
|
1522 |
+
*,
|
1523 |
+
window: _WindowSpec,
|
1524 |
+
n_frames: int,
|
1525 |
+
hop_length: int = 512,
|
1526 |
+
win_length: Optional[int] = None,
|
1527 |
+
n_fft: int = 2048,
|
1528 |
+
dtype: DTypeLike = np.float32,
|
1529 |
+
norm: Optional[float] = None,
|
1530 |
+
) -> np.ndarray:
|
1531 |
+
"""Compute the sum-square envelope of a window function at a given hop length.
|
1532 |
+
|
1533 |
+
This is used to estimate modulation effects induced by windowing observations
|
1534 |
+
in short-time Fourier transforms.
|
1535 |
+
|
1536 |
+
Parameters
|
1537 |
+
----------
|
1538 |
+
window : string, tuple, number, callable, or list-like
|
1539 |
+
Window specification, as in `get_window`
|
1540 |
+
n_frames : int > 0
|
1541 |
+
The number of analysis frames
|
1542 |
+
hop_length : int > 0
|
1543 |
+
The number of samples to advance between frames
|
1544 |
+
win_length : [optional]
|
1545 |
+
The length of the window function. By default, this matches ``n_fft``.
|
1546 |
+
n_fft : int > 0
|
1547 |
+
The length of each analysis frame.
|
1548 |
+
dtype : np.dtype
|
1549 |
+
The data type of the output
|
1550 |
+
norm : {np.inf, -np.inf, 0, float > 0, None}
|
1551 |
+
Normalization mode used in window construction.
|
1552 |
+
Note that this does not affect the squaring operation.
|
1553 |
+
|
1554 |
+
Returns
|
1555 |
+
-------
|
1556 |
+
wss : np.ndarray, shape=``(n_fft + hop_length * (n_frames - 1))``
|
1557 |
+
The sum-squared envelope of the window function
|
1558 |
+
|
1559 |
+
Examples
|
1560 |
+
--------
|
1561 |
+
For a fixed frame length (2048), compare modulation effects for a Hann window
|
1562 |
+
at different hop lengths:
|
1563 |
+
|
1564 |
+
>>> n_frames = 50
|
1565 |
+
>>> wss_256 = librosa.filters.window_sumsquare(window='hann', n_frames=n_frames, hop_length=256)
|
1566 |
+
>>> wss_512 = librosa.filters.window_sumsquare(window='hann', n_frames=n_frames, hop_length=512)
|
1567 |
+
>>> wss_1024 = librosa.filters.window_sumsquare(window='hann', n_frames=n_frames, hop_length=1024)
|
1568 |
+
|
1569 |
+
>>> import matplotlib.pyplot as plt
|
1570 |
+
>>> fig, ax = plt.subplots(nrows=3, sharey=True)
|
1571 |
+
>>> ax[0].plot(wss_256)
|
1572 |
+
>>> ax[0].set(title='hop_length=256')
|
1573 |
+
>>> ax[1].plot(wss_512)
|
1574 |
+
>>> ax[1].set(title='hop_length=512')
|
1575 |
+
>>> ax[2].plot(wss_1024)
|
1576 |
+
>>> ax[2].set(title='hop_length=1024')
|
1577 |
+
"""
|
1578 |
+
if win_length is None:
|
1579 |
+
win_length = n_fft
|
1580 |
+
|
1581 |
+
n = n_fft + hop_length * (n_frames - 1)
|
1582 |
+
x = np.zeros(n, dtype=dtype)
|
1583 |
+
|
1584 |
+
# Compute the squared window at the desired length
|
1585 |
+
win_sq = get_window(window, win_length)
|
1586 |
+
win_sq = util.normalize(win_sq, norm=norm) ** 2
|
1587 |
+
win_sq = util.pad_center(win_sq, size=n_fft)
|
1588 |
+
|
1589 |
+
# Fill the envelope
|
1590 |
+
__window_ss_fill(x, win_sq, n_frames, hop_length)
|
1591 |
+
|
1592 |
+
return x
|
1593 |
+
|
1594 |
+
|
1595 |
+
@cache(level=10)
|
1596 |
+
def diagonal_filter(
|
1597 |
+
window: _WindowSpec,
|
1598 |
+
n: int,
|
1599 |
+
*,
|
1600 |
+
slope: float = 1.0,
|
1601 |
+
angle: Optional[float] = None,
|
1602 |
+
zero_mean: bool = False,
|
1603 |
+
) -> np.ndarray:
|
1604 |
+
"""Build a two-dimensional diagonal filter.
|
1605 |
+
|
1606 |
+
This is primarily used for smoothing recurrence or self-similarity matrices.
|
1607 |
+
|
1608 |
+
Parameters
|
1609 |
+
----------
|
1610 |
+
window : string, tuple, number, callable, or list-like
|
1611 |
+
The window function to use for the filter.
|
1612 |
+
|
1613 |
+
See `get_window` for details.
|
1614 |
+
|
1615 |
+
Note that the window used here should be non-negative.
|
1616 |
+
|
1617 |
+
n : int > 0
|
1618 |
+
the length of the filter
|
1619 |
+
|
1620 |
+
slope : float
|
1621 |
+
The slope of the diagonal filter to produce
|
1622 |
+
|
1623 |
+
angle : float or None
|
1624 |
+
If given, the slope parameter is ignored,
|
1625 |
+
and angle directly sets the orientation of the filter (in radians).
|
1626 |
+
Otherwise, angle is inferred as `arctan(slope)`.
|
1627 |
+
|
1628 |
+
zero_mean : bool
|
1629 |
+
If True, a zero-mean filter is used.
|
1630 |
+
Otherwise, a non-negative averaging filter is used.
|
1631 |
+
|
1632 |
+
This should be enabled if you want to enhance paths and suppress
|
1633 |
+
blocks.
|
1634 |
+
|
1635 |
+
Returns
|
1636 |
+
-------
|
1637 |
+
kernel : np.ndarray, shape=[(m, m)]
|
1638 |
+
The 2-dimensional filter kernel
|
1639 |
+
|
1640 |
+
Notes
|
1641 |
+
-----
|
1642 |
+
This function caches at level 10.
|
1643 |
+
"""
|
1644 |
+
|
1645 |
+
if angle is None:
|
1646 |
+
angle = np.arctan(slope)
|
1647 |
+
|
1648 |
+
win = np.diag(get_window(window, n, fftbins=False))
|
1649 |
+
|
1650 |
+
if not np.isclose(angle, np.pi / 4):
|
1651 |
+
win = scipy.ndimage.rotate(
|
1652 |
+
win, 45 - angle * 180 / np.pi, order=5, prefilter=False
|
1653 |
+
)
|
1654 |
+
|
1655 |
+
np.clip(win, 0, None, out=win)
|
1656 |
+
win /= win.sum()
|
1657 |
+
|
1658 |
+
if zero_mean:
|
1659 |
+
win -= win.mean()
|
1660 |
+
|
1661 |
+
return win
|
sequence.py
ADDED
@@ -0,0 +1,2059 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Sequential modeling
|
5 |
+
===================
|
6 |
+
|
7 |
+
Sequence alignment
|
8 |
+
------------------
|
9 |
+
.. autosummary::
|
10 |
+
:toctree: generated/
|
11 |
+
|
12 |
+
dtw
|
13 |
+
rqa
|
14 |
+
|
15 |
+
Viterbi decoding
|
16 |
+
----------------
|
17 |
+
.. autosummary::
|
18 |
+
:toctree: generated/
|
19 |
+
|
20 |
+
viterbi
|
21 |
+
viterbi_discriminative
|
22 |
+
viterbi_binary
|
23 |
+
|
24 |
+
Transition matrices
|
25 |
+
-------------------
|
26 |
+
.. autosummary::
|
27 |
+
:toctree: generated/
|
28 |
+
|
29 |
+
transition_uniform
|
30 |
+
transition_loop
|
31 |
+
transition_cycle
|
32 |
+
transition_local
|
33 |
+
"""
|
34 |
+
from __future__ import annotations
|
35 |
+
|
36 |
+
import numpy as np
|
37 |
+
from scipy.spatial.distance import cdist
|
38 |
+
from numba import jit
|
39 |
+
from .util import pad_center, fill_off_diagonal, is_positive_int, tiny, expand_to
|
40 |
+
from .util.exceptions import ParameterError
|
41 |
+
from .filters import get_window
|
42 |
+
from typing import Any, Iterable, List, Optional, Tuple, Union, overload
|
43 |
+
from typing_extensions import Literal
|
44 |
+
from ._typing import _WindowSpec, _IntLike_co
|
45 |
+
|
46 |
+
__all__ = [
|
47 |
+
"dtw",
|
48 |
+
"dtw_backtracking",
|
49 |
+
"rqa",
|
50 |
+
"viterbi",
|
51 |
+
"viterbi_discriminative",
|
52 |
+
"viterbi_binary",
|
53 |
+
"transition_uniform",
|
54 |
+
"transition_loop",
|
55 |
+
"transition_cycle",
|
56 |
+
"transition_local",
|
57 |
+
]
|
58 |
+
|
59 |
+
|
60 |
+
@overload
|
61 |
+
def dtw(
|
62 |
+
X: np.ndarray,
|
63 |
+
Y: np.ndarray,
|
64 |
+
*,
|
65 |
+
metric: str = ...,
|
66 |
+
step_sizes_sigma: Optional[np.ndarray] = ...,
|
67 |
+
weights_add: Optional[np.ndarray] = ...,
|
68 |
+
weights_mul: Optional[np.ndarray] = ...,
|
69 |
+
subseq: bool = ...,
|
70 |
+
backtrack: Literal[False],
|
71 |
+
global_constraints: bool = ...,
|
72 |
+
band_rad: float = ...,
|
73 |
+
return_steps: Literal[False] = ...,
|
74 |
+
) -> np.ndarray:
|
75 |
+
...
|
76 |
+
|
77 |
+
|
78 |
+
@overload
|
79 |
+
def dtw(
|
80 |
+
*,
|
81 |
+
C: np.ndarray,
|
82 |
+
metric: str = ...,
|
83 |
+
step_sizes_sigma: Optional[np.ndarray] = ...,
|
84 |
+
weights_add: Optional[np.ndarray] = ...,
|
85 |
+
weights_mul: Optional[np.ndarray] = ...,
|
86 |
+
subseq: bool = ...,
|
87 |
+
backtrack: Literal[False],
|
88 |
+
global_constraints: bool = ...,
|
89 |
+
band_rad: float = ...,
|
90 |
+
return_steps: Literal[False] = ...,
|
91 |
+
) -> np.ndarray:
|
92 |
+
...
|
93 |
+
|
94 |
+
|
95 |
+
@overload
|
96 |
+
def dtw(
|
97 |
+
X: np.ndarray,
|
98 |
+
Y: np.ndarray,
|
99 |
+
*,
|
100 |
+
metric: str = ...,
|
101 |
+
step_sizes_sigma: Optional[np.ndarray] = ...,
|
102 |
+
weights_add: Optional[np.ndarray] = ...,
|
103 |
+
weights_mul: Optional[np.ndarray] = ...,
|
104 |
+
subseq: bool = ...,
|
105 |
+
backtrack: Literal[False],
|
106 |
+
global_constraints: bool = ...,
|
107 |
+
band_rad: float = ...,
|
108 |
+
return_steps: Literal[True],
|
109 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
110 |
+
...
|
111 |
+
|
112 |
+
|
113 |
+
@overload
|
114 |
+
def dtw(
|
115 |
+
*,
|
116 |
+
C: np.ndarray,
|
117 |
+
metric: str = ...,
|
118 |
+
step_sizes_sigma: Optional[np.ndarray] = ...,
|
119 |
+
weights_add: Optional[np.ndarray] = ...,
|
120 |
+
weights_mul: Optional[np.ndarray] = ...,
|
121 |
+
subseq: bool = ...,
|
122 |
+
backtrack: Literal[False],
|
123 |
+
global_constraints: bool = ...,
|
124 |
+
band_rad: float = ...,
|
125 |
+
return_steps: Literal[True],
|
126 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
127 |
+
...
|
128 |
+
|
129 |
+
|
130 |
+
@overload
|
131 |
+
def dtw(
|
132 |
+
X: np.ndarray,
|
133 |
+
Y: np.ndarray,
|
134 |
+
*,
|
135 |
+
metric: str = ...,
|
136 |
+
step_sizes_sigma: Optional[np.ndarray] = ...,
|
137 |
+
weights_add: Optional[np.ndarray] = ...,
|
138 |
+
weights_mul: Optional[np.ndarray] = ...,
|
139 |
+
subseq: bool = ...,
|
140 |
+
backtrack: Literal[True] = ...,
|
141 |
+
global_constraints: bool = ...,
|
142 |
+
band_rad: float = ...,
|
143 |
+
return_steps: Literal[False] = ...,
|
144 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
145 |
+
...
|
146 |
+
|
147 |
+
|
148 |
+
@overload
|
149 |
+
def dtw(
|
150 |
+
*,
|
151 |
+
C: np.ndarray,
|
152 |
+
metric: str = ...,
|
153 |
+
step_sizes_sigma: Optional[np.ndarray] = ...,
|
154 |
+
weights_add: Optional[np.ndarray] = ...,
|
155 |
+
weights_mul: Optional[np.ndarray] = ...,
|
156 |
+
subseq: bool = ...,
|
157 |
+
backtrack: Literal[True] = ...,
|
158 |
+
global_constraints: bool = ...,
|
159 |
+
band_rad: float = ...,
|
160 |
+
return_steps: Literal[False] = ...,
|
161 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
162 |
+
...
|
163 |
+
|
164 |
+
|
165 |
+
@overload
|
166 |
+
def dtw(
|
167 |
+
X: np.ndarray,
|
168 |
+
Y: np.ndarray,
|
169 |
+
*,
|
170 |
+
metric: str = ...,
|
171 |
+
step_sizes_sigma: Optional[np.ndarray] = ...,
|
172 |
+
weights_add: Optional[np.ndarray] = ...,
|
173 |
+
weights_mul: Optional[np.ndarray] = ...,
|
174 |
+
subseq: bool = ...,
|
175 |
+
backtrack: Literal[True] = ...,
|
176 |
+
global_constraints: bool = ...,
|
177 |
+
band_rad: float = ...,
|
178 |
+
return_steps: Literal[True],
|
179 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
180 |
+
...
|
181 |
+
|
182 |
+
|
183 |
+
@overload
|
184 |
+
def dtw(
|
185 |
+
*,
|
186 |
+
C: np.ndarray,
|
187 |
+
metric: str = ...,
|
188 |
+
step_sizes_sigma: Optional[np.ndarray] = ...,
|
189 |
+
weights_add: Optional[np.ndarray] = ...,
|
190 |
+
weights_mul: Optional[np.ndarray] = ...,
|
191 |
+
subseq: bool = ...,
|
192 |
+
backtrack: Literal[True] = ...,
|
193 |
+
global_constraints: bool = ...,
|
194 |
+
band_rad: float = ...,
|
195 |
+
return_steps: Literal[True],
|
196 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
197 |
+
...
|
198 |
+
|
199 |
+
|
200 |
+
def dtw(
|
201 |
+
X: Optional[np.ndarray] = None,
|
202 |
+
Y: Optional[np.ndarray] = None,
|
203 |
+
*,
|
204 |
+
C: Optional[np.ndarray] = None,
|
205 |
+
metric: str = "euclidean",
|
206 |
+
step_sizes_sigma: Optional[np.ndarray] = None,
|
207 |
+
weights_add: Optional[np.ndarray] = None,
|
208 |
+
weights_mul: Optional[np.ndarray] = None,
|
209 |
+
subseq: bool = False,
|
210 |
+
backtrack: bool = True,
|
211 |
+
global_constraints: bool = False,
|
212 |
+
band_rad: float = 0.25,
|
213 |
+
return_steps: bool = False,
|
214 |
+
) -> Union[
|
215 |
+
np.ndarray, Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, np.ndarray]
|
216 |
+
]:
|
217 |
+
"""Dynamic time warping (DTW).
|
218 |
+
|
219 |
+
This function performs a DTW and path backtracking on two sequences.
|
220 |
+
We follow the nomenclature and algorithmic approach as described in [#]_.
|
221 |
+
|
222 |
+
.. [#] Meinard Mueller
|
223 |
+
Fundamentals of Music Processing — Audio, Analysis, Algorithms, Applications
|
224 |
+
Springer Verlag, ISBN: 978-3-319-21944-8, 2015.
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
X : np.ndarray [shape=(..., K, N)]
|
229 |
+
audio feature matrix (e.g., chroma features)
|
230 |
+
|
231 |
+
If ``X`` has more than two dimensions (e.g., for multi-channel inputs), all leading
|
232 |
+
dimensions are used when computing distance to ``Y``.
|
233 |
+
|
234 |
+
Y : np.ndarray [shape=(..., K, M)]
|
235 |
+
audio feature matrix (e.g., chroma features)
|
236 |
+
|
237 |
+
C : np.ndarray [shape=(N, M)]
|
238 |
+
Precomputed distance matrix. If supplied, X and Y must not be supplied and
|
239 |
+
``metric`` will be ignored.
|
240 |
+
|
241 |
+
metric : str
|
242 |
+
Identifier for the cost-function as documented
|
243 |
+
in `scipy.spatial.distance.cdist()`
|
244 |
+
|
245 |
+
step_sizes_sigma : np.ndarray [shape=[n, 2]]
|
246 |
+
Specifies allowed step sizes as used by the dtw.
|
247 |
+
|
248 |
+
weights_add : np.ndarray [shape=[n, ]]
|
249 |
+
Additive weights to penalize certain step sizes.
|
250 |
+
|
251 |
+
weights_mul : np.ndarray [shape=[n, ]]
|
252 |
+
Multiplicative weights to penalize certain step sizes.
|
253 |
+
|
254 |
+
subseq : bool
|
255 |
+
Enable subsequence DTW, e.g., for retrieval tasks.
|
256 |
+
|
257 |
+
backtrack : bool
|
258 |
+
Enable backtracking in accumulated cost matrix.
|
259 |
+
|
260 |
+
global_constraints : bool
|
261 |
+
Applies global constraints to the cost matrix ``C`` (Sakoe-Chiba band).
|
262 |
+
|
263 |
+
band_rad : float
|
264 |
+
The Sakoe-Chiba band radius (1/2 of the width) will be
|
265 |
+
``int(radius*min(C.shape))``.
|
266 |
+
|
267 |
+
return_steps : bool
|
268 |
+
If true, the function returns ``steps``, the step matrix, containing
|
269 |
+
the indices of the used steps from the cost accumulation step.
|
270 |
+
|
271 |
+
Returns
|
272 |
+
-------
|
273 |
+
D : np.ndarray [shape=(N, M)]
|
274 |
+
accumulated cost matrix.
|
275 |
+
D[N, M] is the total alignment cost.
|
276 |
+
When doing subsequence DTW, D[N,:] indicates a matching function.
|
277 |
+
wp : np.ndarray [shape=(N, 2)]
|
278 |
+
Warping path with index pairs.
|
279 |
+
Each row of the array contains an index pair (n, m).
|
280 |
+
Only returned when ``backtrack`` is True.
|
281 |
+
steps : np.ndarray [shape=(N, M)]
|
282 |
+
Step matrix, containing the indices of the used steps from the cost
|
283 |
+
accumulation step.
|
284 |
+
Only returned when ``return_steps`` is True.
|
285 |
+
|
286 |
+
Raises
|
287 |
+
------
|
288 |
+
ParameterError
|
289 |
+
If you are doing diagonal matching and Y is shorter than X or if an
|
290 |
+
incompatible combination of X, Y, and C are supplied.
|
291 |
+
|
292 |
+
If your input dimensions are incompatible.
|
293 |
+
|
294 |
+
If the cost matrix has NaN values.
|
295 |
+
|
296 |
+
Examples
|
297 |
+
--------
|
298 |
+
>>> import numpy as np
|
299 |
+
>>> import matplotlib.pyplot as plt
|
300 |
+
>>> y, sr = librosa.load(librosa.ex('brahms'), offset=10, duration=15)
|
301 |
+
>>> X = librosa.feature.chroma_cens(y=y, sr=sr)
|
302 |
+
>>> noise = np.random.rand(X.shape[0], 200)
|
303 |
+
>>> Y = np.concatenate((noise, noise, X, noise), axis=1)
|
304 |
+
>>> D, wp = librosa.sequence.dtw(X, Y, subseq=True)
|
305 |
+
>>> fig, ax = plt.subplots(nrows=2, sharex=True)
|
306 |
+
>>> img = librosa.display.specshow(D, x_axis='frames', y_axis='frames',
|
307 |
+
... ax=ax[0])
|
308 |
+
>>> ax[0].set(title='DTW cost', xlabel='Noisy sequence', ylabel='Target')
|
309 |
+
>>> ax[0].plot(wp[:, 1], wp[:, 0], label='Optimal path', color='y')
|
310 |
+
>>> ax[0].legend()
|
311 |
+
>>> fig.colorbar(img, ax=ax[0])
|
312 |
+
>>> ax[1].plot(D[-1, :] / wp.shape[0])
|
313 |
+
>>> ax[1].set(xlim=[0, Y.shape[1]], ylim=[0, 2],
|
314 |
+
... title='Matching cost function')
|
315 |
+
"""
|
316 |
+
# Default Parameters
|
317 |
+
default_steps = np.array([[1, 1], [0, 1], [1, 0]], dtype=np.uint32)
|
318 |
+
default_weights_add = np.zeros(3, dtype=np.float64)
|
319 |
+
default_weights_mul = np.ones(3, dtype=np.float64)
|
320 |
+
|
321 |
+
if step_sizes_sigma is None:
|
322 |
+
# Use the default steps
|
323 |
+
step_sizes_sigma = default_steps
|
324 |
+
|
325 |
+
# Use default weights if none are provided
|
326 |
+
if weights_add is None:
|
327 |
+
weights_add = default_weights_add
|
328 |
+
|
329 |
+
if weights_mul is None:
|
330 |
+
weights_mul = default_weights_mul
|
331 |
+
else:
|
332 |
+
# If we have custom steps but no weights, construct them here
|
333 |
+
if weights_add is None:
|
334 |
+
weights_add = np.zeros(len(step_sizes_sigma), dtype=np.float64)
|
335 |
+
|
336 |
+
if weights_mul is None:
|
337 |
+
weights_mul = np.ones(len(step_sizes_sigma), dtype=np.float64)
|
338 |
+
|
339 |
+
# Make the default step weights infinite so that they are never
|
340 |
+
# preferred over custom steps
|
341 |
+
default_weights_add.fill(np.inf)
|
342 |
+
default_weights_mul.fill(np.inf)
|
343 |
+
|
344 |
+
# Append custom steps and weights to our defaults
|
345 |
+
step_sizes_sigma = np.concatenate((default_steps, step_sizes_sigma))
|
346 |
+
weights_add = np.concatenate((default_weights_add, weights_add))
|
347 |
+
weights_mul = np.concatenate((default_weights_mul, weights_mul))
|
348 |
+
|
349 |
+
# These asserts are bad, but mypy cannot trace the code paths properly
|
350 |
+
assert step_sizes_sigma is not None
|
351 |
+
assert weights_add is not None
|
352 |
+
assert weights_mul is not None
|
353 |
+
|
354 |
+
if np.any(step_sizes_sigma < 0):
|
355 |
+
raise ParameterError("step_sizes_sigma cannot contain negative values")
|
356 |
+
|
357 |
+
if len(step_sizes_sigma) != len(weights_add):
|
358 |
+
raise ParameterError("len(weights_add) must be equal to len(step_sizes_sigma)")
|
359 |
+
if len(step_sizes_sigma) != len(weights_mul):
|
360 |
+
raise ParameterError("len(weights_mul) must be equal to len(step_sizes_sigma)")
|
361 |
+
|
362 |
+
if C is None and (X is None or Y is None):
|
363 |
+
raise ParameterError("If C is not supplied, both X and Y must be supplied")
|
364 |
+
if C is not None and (X is not None or Y is not None):
|
365 |
+
raise ParameterError("If C is supplied, both X and Y must not be supplied")
|
366 |
+
|
367 |
+
c_is_transposed = False
|
368 |
+
|
369 |
+
# calculate pair-wise distances, unless already supplied.
|
370 |
+
# C_local will keep track of whether the distance matrix was supplied
|
371 |
+
# by the user (False) or constructed locally (True)
|
372 |
+
C_local = False
|
373 |
+
if C is None:
|
374 |
+
C_local = True
|
375 |
+
# mypy can't figure out that this case does not happen
|
376 |
+
assert X is not None and Y is not None
|
377 |
+
# take care of dimensions
|
378 |
+
X = np.atleast_2d(X)
|
379 |
+
Y = np.atleast_2d(Y)
|
380 |
+
|
381 |
+
# Perform some shape-squashing here
|
382 |
+
# Put the time axes around front
|
383 |
+
# Suppress types because mypy doesn't know these are ndarrays
|
384 |
+
X = np.swapaxes(X, -1, 0) # type: ignore
|
385 |
+
Y = np.swapaxes(Y, -1, 0) # type: ignore
|
386 |
+
|
387 |
+
# Flatten the remaining dimensions
|
388 |
+
# Use F-ordering to preserve columns
|
389 |
+
X = X.reshape((X.shape[0], -1), order="F")
|
390 |
+
Y = Y.reshape((Y.shape[0], -1), order="F")
|
391 |
+
|
392 |
+
try:
|
393 |
+
C = cdist(X, Y, metric=metric)
|
394 |
+
except ValueError as exc:
|
395 |
+
raise ParameterError(
|
396 |
+
"scipy.spatial.distance.cdist returned an error.\n"
|
397 |
+
"Please provide your input in the form X.shape=(K, N) "
|
398 |
+
"and Y.shape=(K, M).\n 1-dimensional sequences should "
|
399 |
+
"be reshaped to X.shape=(1, N) and Y.shape=(1, M)."
|
400 |
+
) from exc
|
401 |
+
|
402 |
+
# for subsequence matching:
|
403 |
+
# if N > M, Y can be a subsequence of X
|
404 |
+
if subseq and (X.shape[0] > Y.shape[0]):
|
405 |
+
C = C.T
|
406 |
+
c_is_transposed = True
|
407 |
+
|
408 |
+
C = np.atleast_2d(C)
|
409 |
+
|
410 |
+
# if diagonal matching, Y has to be longer than X
|
411 |
+
# (X simply cannot be contained in Y)
|
412 |
+
if np.array_equal(step_sizes_sigma, np.array([[1, 1]])) and (
|
413 |
+
C.shape[0] > C.shape[1]
|
414 |
+
):
|
415 |
+
raise ParameterError(
|
416 |
+
"For diagonal matching: Y.shape[-1] >= X.shape[-11] "
|
417 |
+
"(C.shape[1] >= C.shape[0])"
|
418 |
+
)
|
419 |
+
|
420 |
+
max_0 = step_sizes_sigma[:, 0].max()
|
421 |
+
max_1 = step_sizes_sigma[:, 1].max()
|
422 |
+
|
423 |
+
# check C here for nans before building global constraints
|
424 |
+
if np.any(np.isnan(C)):
|
425 |
+
raise ParameterError("DTW cost matrix C has NaN values. ")
|
426 |
+
|
427 |
+
if global_constraints:
|
428 |
+
# Apply global constraints to the cost matrix
|
429 |
+
if not C_local:
|
430 |
+
# If C was provided as input, make a copy here
|
431 |
+
C = np.copy(C)
|
432 |
+
fill_off_diagonal(C, radius=band_rad, value=np.inf)
|
433 |
+
|
434 |
+
# initialize whole matrix with infinity values
|
435 |
+
D = np.ones(C.shape + np.array([max_0, max_1])) * np.inf
|
436 |
+
|
437 |
+
# set starting point to C[0, 0]
|
438 |
+
D[max_0, max_1] = C[0, 0]
|
439 |
+
|
440 |
+
if subseq:
|
441 |
+
D[max_0, max_1:] = C[0, :]
|
442 |
+
|
443 |
+
# initialize step matrix with -1
|
444 |
+
# will be filled in calc_accu_cost() with indices from step_sizes_sigma
|
445 |
+
steps = np.zeros(D.shape, dtype=np.int32)
|
446 |
+
|
447 |
+
# these steps correspond to left- (first row) and up-(first column) moves
|
448 |
+
steps[0, :] = 1
|
449 |
+
steps[:, 0] = 2
|
450 |
+
|
451 |
+
# calculate accumulated cost matrix
|
452 |
+
D: np.ndarray
|
453 |
+
steps: np.ndarray
|
454 |
+
D, steps = __dtw_calc_accu_cost(
|
455 |
+
C, D, steps, step_sizes_sigma, weights_mul, weights_add, max_0, max_1
|
456 |
+
)
|
457 |
+
|
458 |
+
# delete infinity rows and columns
|
459 |
+
D = D[max_0:, max_1:]
|
460 |
+
steps = steps[max_0:, max_1:]
|
461 |
+
|
462 |
+
return_values: List[np.ndarray]
|
463 |
+
if backtrack:
|
464 |
+
wp: np.ndarray
|
465 |
+
if subseq:
|
466 |
+
if np.all(np.isinf(D[-1])):
|
467 |
+
raise ParameterError(
|
468 |
+
"No valid sub-sequence warping path could "
|
469 |
+
"be constructed with the given step sizes."
|
470 |
+
)
|
471 |
+
start = np.argmin(D[-1, :])
|
472 |
+
_wp = __dtw_backtracking(steps, step_sizes_sigma, subseq, start)
|
473 |
+
else:
|
474 |
+
# perform warping path backtracking
|
475 |
+
if np.isinf(D[-1, -1]):
|
476 |
+
raise ParameterError(
|
477 |
+
"No valid sub-sequence warping path could "
|
478 |
+
"be constructed with the given step sizes."
|
479 |
+
)
|
480 |
+
|
481 |
+
_wp = __dtw_backtracking(steps, step_sizes_sigma, subseq)
|
482 |
+
if _wp[-1] != (0, 0):
|
483 |
+
raise ParameterError(
|
484 |
+
"Unable to compute a full DTW warping path. "
|
485 |
+
"You may want to try again with subseq=True."
|
486 |
+
)
|
487 |
+
|
488 |
+
wp = np.asarray(_wp, dtype=int)
|
489 |
+
|
490 |
+
# since we transposed in the beginning, we have to adjust the index pairs back
|
491 |
+
if subseq and (
|
492 |
+
(X is not None and Y is not None and X.shape[0] > Y.shape[0])
|
493 |
+
or c_is_transposed
|
494 |
+
or C.shape[0] > C.shape[1]
|
495 |
+
):
|
496 |
+
wp = np.fliplr(wp)
|
497 |
+
return_values = [D, wp]
|
498 |
+
else:
|
499 |
+
return_values = [D]
|
500 |
+
|
501 |
+
if return_steps:
|
502 |
+
return_values.append(steps)
|
503 |
+
|
504 |
+
if len(return_values) > 1:
|
505 |
+
# Suppressing type check here because mypy can't
|
506 |
+
# infer the exact length of the tuple
|
507 |
+
return tuple(return_values) # type: ignore
|
508 |
+
else:
|
509 |
+
return return_values[0]
|
510 |
+
|
511 |
+
|
512 |
+
@jit(nopython=True, cache=False) # type: ignore
|
513 |
+
def __dtw_calc_accu_cost(
|
514 |
+
C: np.ndarray,
|
515 |
+
D: np.ndarray,
|
516 |
+
steps: np.ndarray,
|
517 |
+
step_sizes_sigma: np.ndarray,
|
518 |
+
weights_mul: np.ndarray,
|
519 |
+
weights_add: np.ndarray,
|
520 |
+
max_0: int,
|
521 |
+
max_1: int,
|
522 |
+
) -> Tuple[np.ndarray, np.ndarray]: # pragma: no cover
|
523 |
+
"""Calculate the accumulated cost matrix D.
|
524 |
+
|
525 |
+
Use dynamic programming to calculate the accumulated costs.
|
526 |
+
|
527 |
+
Parameters
|
528 |
+
----------
|
529 |
+
C : np.ndarray [shape=(N, M)]
|
530 |
+
pre-computed cost matrix
|
531 |
+
D : np.ndarray [shape=(N, M)]
|
532 |
+
accumulated cost matrix
|
533 |
+
steps : np.ndarray [shape=(N, M)]
|
534 |
+
Step matrix, containing the indices of the used steps from the cost
|
535 |
+
accumulation step.
|
536 |
+
step_sizes_sigma : np.ndarray [shape=[n, 2]]
|
537 |
+
Specifies allowed step sizes as used by the dtw.
|
538 |
+
weights_add : np.ndarray [shape=[n, ]]
|
539 |
+
Additive weights to penalize certain step sizes.
|
540 |
+
weights_mul : np.ndarray [shape=[n, ]]
|
541 |
+
Multiplicative weights to penalize certain step sizes.
|
542 |
+
max_0 : int
|
543 |
+
maximum number of steps in step_sizes_sigma in dim 0.
|
544 |
+
max_1 : int
|
545 |
+
maximum number of steps in step_sizes_sigma in dim 1.
|
546 |
+
|
547 |
+
Returns
|
548 |
+
-------
|
549 |
+
D : np.ndarray [shape=(N, M)]
|
550 |
+
accumulated cost matrix.
|
551 |
+
D[N, M] is the total alignment cost.
|
552 |
+
When doing subsequence DTW, D[N,:] indicates a matching function.
|
553 |
+
steps : np.ndarray [shape=(N, M)]
|
554 |
+
Step matrix, containing the indices of the used steps from the cost
|
555 |
+
accumulation step.
|
556 |
+
|
557 |
+
See Also
|
558 |
+
--------
|
559 |
+
dtw
|
560 |
+
"""
|
561 |
+
for cur_n in range(max_0, D.shape[0]):
|
562 |
+
for cur_m in range(max_1, D.shape[1]):
|
563 |
+
# accumulate costs
|
564 |
+
for cur_step_idx, cur_w_add, cur_w_mul in zip(
|
565 |
+
range(step_sizes_sigma.shape[0]), weights_add, weights_mul
|
566 |
+
):
|
567 |
+
cur_D = D[
|
568 |
+
cur_n - step_sizes_sigma[cur_step_idx, 0],
|
569 |
+
cur_m - step_sizes_sigma[cur_step_idx, 1],
|
570 |
+
]
|
571 |
+
cur_C = cur_w_mul * C[cur_n - max_0, cur_m - max_1]
|
572 |
+
cur_C += cur_w_add
|
573 |
+
cur_cost = cur_D + cur_C
|
574 |
+
|
575 |
+
# check if cur_cost is smaller than the one stored in D
|
576 |
+
if cur_cost < D[cur_n, cur_m]:
|
577 |
+
D[cur_n, cur_m] = cur_cost
|
578 |
+
|
579 |
+
# save step-index
|
580 |
+
steps[cur_n, cur_m] = cur_step_idx
|
581 |
+
|
582 |
+
return D, steps
|
583 |
+
|
584 |
+
|
585 |
+
@jit(nopython=True, cache=False) # type: ignore
|
586 |
+
def __dtw_backtracking(
|
587 |
+
steps: np.ndarray,
|
588 |
+
step_sizes_sigma: np.ndarray,
|
589 |
+
subseq: bool,
|
590 |
+
start: Optional[int] = None,
|
591 |
+
) -> List[Tuple[int, int]]: # pragma: no cover
|
592 |
+
"""Backtrack optimal warping path.
|
593 |
+
|
594 |
+
Uses the saved step sizes from the cost accumulation
|
595 |
+
step to backtrack the index pairs for an optimal
|
596 |
+
warping path.
|
597 |
+
|
598 |
+
Parameters
|
599 |
+
----------
|
600 |
+
steps : np.ndarray [shape=(N, M)]
|
601 |
+
Step matrix, containing the indices of the used steps from the cost
|
602 |
+
accumulation step.
|
603 |
+
step_sizes_sigma : np.ndarray [shape=[n, 2]]
|
604 |
+
Specifies allowed step sizes as used by the dtw.
|
605 |
+
subseq : bool
|
606 |
+
Enable subsequence DTW, e.g., for retrieval tasks.
|
607 |
+
start : int
|
608 |
+
Start column index for backtraing (only allowed for ``subseq=True``)
|
609 |
+
|
610 |
+
Returns
|
611 |
+
-------
|
612 |
+
wp : list [shape=(N,)]
|
613 |
+
Warping path with index pairs.
|
614 |
+
Each list entry contains an index pair
|
615 |
+
(n, m) as a tuple
|
616 |
+
|
617 |
+
See Also
|
618 |
+
--------
|
619 |
+
dtw
|
620 |
+
"""
|
621 |
+
if start is None:
|
622 |
+
cur_idx = (steps.shape[0] - 1, steps.shape[1] - 1)
|
623 |
+
else:
|
624 |
+
cur_idx = (steps.shape[0] - 1, start)
|
625 |
+
|
626 |
+
wp = []
|
627 |
+
# Set starting point D(N, M) and append it to the path
|
628 |
+
wp.append((cur_idx[0], cur_idx[1]))
|
629 |
+
|
630 |
+
# Loop backwards.
|
631 |
+
# Stop criteria:
|
632 |
+
# Setting it to (0, 0) does not work for the subsequence dtw,
|
633 |
+
# so we only ask to reach the first row of the matrix.
|
634 |
+
|
635 |
+
while (subseq and cur_idx[0] > 0) or (not subseq and cur_idx != (0, 0)):
|
636 |
+
cur_step_idx = steps[(cur_idx[0], cur_idx[1])]
|
637 |
+
|
638 |
+
# save tuple with minimal acc. cost in path
|
639 |
+
cur_idx = (
|
640 |
+
cur_idx[0] - step_sizes_sigma[cur_step_idx][0],
|
641 |
+
cur_idx[1] - step_sizes_sigma[cur_step_idx][1],
|
642 |
+
)
|
643 |
+
|
644 |
+
# If we run off the side of the cost matrix, break here
|
645 |
+
if min(cur_idx) < 0:
|
646 |
+
break
|
647 |
+
|
648 |
+
# append to warping path
|
649 |
+
wp.append((cur_idx[0], cur_idx[1]))
|
650 |
+
|
651 |
+
return wp
|
652 |
+
|
653 |
+
|
654 |
+
def dtw_backtracking(
|
655 |
+
steps: np.ndarray,
|
656 |
+
*,
|
657 |
+
step_sizes_sigma: Optional[np.ndarray] = None,
|
658 |
+
subseq: bool = False,
|
659 |
+
start: Optional[Union[int, np.integer[Any]]] = None,
|
660 |
+
) -> np.ndarray:
|
661 |
+
"""Backtrack a warping path.
|
662 |
+
|
663 |
+
Uses the saved step sizes from the cost accumulation
|
664 |
+
step to backtrack the index pairs for a warping path.
|
665 |
+
|
666 |
+
Parameters
|
667 |
+
----------
|
668 |
+
steps : np.ndarray [shape=(N, M)]
|
669 |
+
Step matrix, containing the indices of the used steps from the cost
|
670 |
+
accumulation step.
|
671 |
+
step_sizes_sigma : np.ndarray [shape=[n, 2]]
|
672 |
+
Specifies allowed step sizes as used by the dtw.
|
673 |
+
subseq : bool
|
674 |
+
Enable subsequence DTW, e.g., for retrieval tasks.
|
675 |
+
start : int
|
676 |
+
Start column index for backtraing (only allowed for ``subseq=True``)
|
677 |
+
|
678 |
+
Returns
|
679 |
+
-------
|
680 |
+
wp : list [shape=(N,)]
|
681 |
+
Warping path with index pairs.
|
682 |
+
Each list entry contains an index pair
|
683 |
+
(n, m) as a tuple
|
684 |
+
|
685 |
+
See Also
|
686 |
+
--------
|
687 |
+
dtw
|
688 |
+
"""
|
689 |
+
if subseq is False and start is not None:
|
690 |
+
raise ParameterError(
|
691 |
+
f"start is only allowed to be set if subseq is True (start={start}, subseq={subseq})"
|
692 |
+
)
|
693 |
+
|
694 |
+
# Default Parameters
|
695 |
+
default_steps = np.array([[1, 1], [0, 1], [1, 0]], dtype=np.uint32)
|
696 |
+
|
697 |
+
if step_sizes_sigma is None:
|
698 |
+
# Use the default steps
|
699 |
+
step_sizes_sigma = default_steps
|
700 |
+
else:
|
701 |
+
# Append custom steps and weights to our defaults
|
702 |
+
step_sizes_sigma = np.concatenate((default_steps, step_sizes_sigma))
|
703 |
+
|
704 |
+
wp = __dtw_backtracking(steps, step_sizes_sigma, subseq, start)
|
705 |
+
return np.asarray(wp, dtype=int)
|
706 |
+
|
707 |
+
|
708 |
+
@overload
|
709 |
+
def rqa(
|
710 |
+
sim: np.ndarray,
|
711 |
+
*,
|
712 |
+
gap_onset: float = ...,
|
713 |
+
gap_extend: float = ...,
|
714 |
+
knight_moves: bool = ...,
|
715 |
+
backtrack: Literal[False],
|
716 |
+
) -> np.ndarray:
|
717 |
+
...
|
718 |
+
|
719 |
+
|
720 |
+
@overload
|
721 |
+
def rqa(
|
722 |
+
sim: np.ndarray,
|
723 |
+
*,
|
724 |
+
gap_onset: float = ...,
|
725 |
+
gap_extend: float = ...,
|
726 |
+
knight_moves: bool = ...,
|
727 |
+
backtrack: Literal[True] = ...,
|
728 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
729 |
+
...
|
730 |
+
|
731 |
+
|
732 |
+
@overload
|
733 |
+
def rqa(
|
734 |
+
sim: np.ndarray,
|
735 |
+
*,
|
736 |
+
gap_onset: float = ...,
|
737 |
+
gap_extend: float = ...,
|
738 |
+
knight_moves: bool = ...,
|
739 |
+
backtrack: bool = ...,
|
740 |
+
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
|
741 |
+
...
|
742 |
+
|
743 |
+
|
744 |
+
def rqa(
|
745 |
+
sim: np.ndarray,
|
746 |
+
*,
|
747 |
+
gap_onset: float = 1,
|
748 |
+
gap_extend: float = 1,
|
749 |
+
knight_moves: bool = True,
|
750 |
+
backtrack: bool = True,
|
751 |
+
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
|
752 |
+
"""Recurrence quantification analysis (RQA)
|
753 |
+
|
754 |
+
This function implements different forms of RQA as described by
|
755 |
+
Serra, Serra, and Andrzejak (SSA). [#]_ These methods take as input
|
756 |
+
a self- or cross-similarity matrix ``sim``, and calculate the value
|
757 |
+
of path alignments by dynamic programming.
|
758 |
+
|
759 |
+
Note that unlike dynamic time warping (`dtw`), alignment paths here are
|
760 |
+
maximized, not minimized, so the input should measure similarity rather
|
761 |
+
than distance.
|
762 |
+
|
763 |
+
The simplest RQA method, denoted as `L` (SSA equation 3) and equivalent
|
764 |
+
to the method described by Eckman, Kamphorst, and Ruelle [#]_, accumulates
|
765 |
+
the length of diagonal paths with positive values in the input:
|
766 |
+
|
767 |
+
- ``score[i, j] = score[i-1, j-1] + 1`` if ``sim[i, j] > 0``
|
768 |
+
- ``score[i, j] = 0`` otherwise.
|
769 |
+
|
770 |
+
The second method, denoted as `S` (SSA equation 4), is similar to the first,
|
771 |
+
but allows for "knight moves" (as in the chess piece) in addition to strict
|
772 |
+
diagonal moves:
|
773 |
+
|
774 |
+
- ``score[i, j] = max(score[i-1, j-1], score[i-2, j-1], score[i-1, j-2]) + 1`` if ``sim[i, j] >
|
775 |
+
0``
|
776 |
+
- ``score[i, j] = 0`` otherwise.
|
777 |
+
|
778 |
+
The third method, denoted as `Q` (SSA equations 5 and 6) extends this by
|
779 |
+
allowing gaps in the alignment that incur some cost, rather than a hard
|
780 |
+
reset to 0 whenever ``sim[i, j] == 0``.
|
781 |
+
Gaps are penalized by two additional parameters, ``gap_onset`` and ``gap_extend``,
|
782 |
+
which are subtracted from the value of the alignment path every time a gap
|
783 |
+
is introduced or extended (respectively).
|
784 |
+
|
785 |
+
Note that setting ``gap_onset`` and ``gap_extend`` to `np.inf` recovers the second
|
786 |
+
method, and disabling knight moves recovers the first.
|
787 |
+
|
788 |
+
.. [#] Serrà, Joan, Xavier Serra, and Ralph G. Andrzejak.
|
789 |
+
"Cross recurrence quantification for cover song identification."
|
790 |
+
New Journal of Physics 11, no. 9 (2009): 093017.
|
791 |
+
|
792 |
+
.. [#] Eckmann, J. P., S. Oliffson Kamphorst, and D. Ruelle.
|
793 |
+
"Recurrence plots of dynamical systems."
|
794 |
+
World Scientific Series on Nonlinear Science Series A 16 (1995): 441-446.
|
795 |
+
|
796 |
+
Parameters
|
797 |
+
----------
|
798 |
+
sim : np.ndarray [shape=(N, M), non-negative]
|
799 |
+
The similarity matrix to use as input.
|
800 |
+
|
801 |
+
This can either be a recurrence matrix (self-similarity)
|
802 |
+
or a cross-similarity matrix between two sequences.
|
803 |
+
|
804 |
+
gap_onset : float > 0
|
805 |
+
Penalty for introducing a gap to an alignment sequence
|
806 |
+
|
807 |
+
gap_extend : float > 0
|
808 |
+
Penalty for extending a gap in an alignment sequence
|
809 |
+
|
810 |
+
knight_moves : bool
|
811 |
+
If ``True`` (default), allow for "knight moves" in the alignment,
|
812 |
+
e.g., ``(n, m) => (n + 1, m + 2)`` or ``(n + 2, m + 1)``.
|
813 |
+
|
814 |
+
If ``False``, only allow for diagonal moves ``(n, m) => (n + 1, m + 1)``.
|
815 |
+
|
816 |
+
backtrack : bool
|
817 |
+
If ``True``, return the alignment path.
|
818 |
+
|
819 |
+
If ``False``, only return the score matrix.
|
820 |
+
|
821 |
+
Returns
|
822 |
+
-------
|
823 |
+
score : np.ndarray [shape=(N, M)]
|
824 |
+
The alignment score matrix. ``score[n, m]`` is the cumulative value of
|
825 |
+
the best alignment sequence ending in frames ``n`` and ``m``.
|
826 |
+
path : np.ndarray [shape=(k, 2)] (optional)
|
827 |
+
If ``backtrack=True``, ``path`` contains a list of pairs of aligned frames
|
828 |
+
in the best alignment sequence.
|
829 |
+
|
830 |
+
``path[i] = [n, m]`` indicates that row ``n`` aligns to column ``m``.
|
831 |
+
|
832 |
+
See Also
|
833 |
+
--------
|
834 |
+
librosa.segment.recurrence_matrix
|
835 |
+
librosa.segment.cross_similarity
|
836 |
+
dtw
|
837 |
+
|
838 |
+
Examples
|
839 |
+
--------
|
840 |
+
Simple diagonal path enhancement (L-mode)
|
841 |
+
|
842 |
+
>>> import numpy as np
|
843 |
+
>>> import matplotlib.pyplot as plt
|
844 |
+
>>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=30)
|
845 |
+
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
|
846 |
+
>>> # Use time-delay embedding to reduce noise
|
847 |
+
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
|
848 |
+
>>> # Build recurrence, suppress self-loops within 1 second
|
849 |
+
>>> rec = librosa.segment.recurrence_matrix(chroma_stack, width=43,
|
850 |
+
... mode='affinity',
|
851 |
+
... metric='cosine')
|
852 |
+
>>> # using infinite cost for gaps enforces strict path continuation
|
853 |
+
>>> L_score, L_path = librosa.sequence.rqa(rec,
|
854 |
+
... gap_onset=np.inf,
|
855 |
+
... gap_extend=np.inf,
|
856 |
+
... knight_moves=False)
|
857 |
+
>>> fig, ax = plt.subplots(ncols=2)
|
858 |
+
>>> librosa.display.specshow(rec, x_axis='frames', y_axis='frames', ax=ax[0])
|
859 |
+
>>> ax[0].set(title='Recurrence matrix')
|
860 |
+
>>> librosa.display.specshow(L_score, x_axis='frames', y_axis='frames', ax=ax[1])
|
861 |
+
>>> ax[1].set(title='Alignment score matrix')
|
862 |
+
>>> ax[1].plot(L_path[:, 1], L_path[:, 0], label='Optimal path', color='c')
|
863 |
+
>>> ax[1].legend()
|
864 |
+
>>> ax[1].label_outer()
|
865 |
+
|
866 |
+
Full alignment using gaps and knight moves
|
867 |
+
|
868 |
+
>>> # New gaps cost 5, extending old gaps cost 10 for each step
|
869 |
+
>>> score, path = librosa.sequence.rqa(rec, gap_onset=5, gap_extend=10)
|
870 |
+
>>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
|
871 |
+
>>> librosa.display.specshow(rec, x_axis='frames', y_axis='frames', ax=ax[0])
|
872 |
+
>>> ax[0].set(title='Recurrence matrix')
|
873 |
+
>>> librosa.display.specshow(score, x_axis='frames', y_axis='frames', ax=ax[1])
|
874 |
+
>>> ax[1].set(title='Alignment score matrix')
|
875 |
+
>>> ax[1].plot(path[:, 1], path[:, 0], label='Optimal path', color='c')
|
876 |
+
>>> ax[1].legend()
|
877 |
+
>>> ax[1].label_outer()
|
878 |
+
"""
|
879 |
+
|
880 |
+
if gap_onset < 0:
|
881 |
+
raise ParameterError("gap_onset={} must be strictly positive")
|
882 |
+
if gap_extend < 0:
|
883 |
+
raise ParameterError("gap_extend={} must be strictly positive")
|
884 |
+
|
885 |
+
score: np.ndarray
|
886 |
+
pointers: np.ndarray
|
887 |
+
score, pointers = __rqa_dp(sim, gap_onset, gap_extend, knight_moves)
|
888 |
+
if backtrack:
|
889 |
+
path = __rqa_backtrack(score, pointers)
|
890 |
+
return score, path
|
891 |
+
|
892 |
+
return score
|
893 |
+
|
894 |
+
|
895 |
+
@jit(nopython=True, cache=False) # type: ignore
|
896 |
+
def __rqa_dp(
|
897 |
+
sim: np.ndarray, gap_onset: float, gap_extend: float, knight: bool
|
898 |
+
) -> Tuple[np.ndarray, np.ndarray]: # pragma: no cover
|
899 |
+
"""RQA dynamic programming implementation"""
|
900 |
+
|
901 |
+
# The output array
|
902 |
+
score = np.zeros(sim.shape, dtype=sim.dtype)
|
903 |
+
|
904 |
+
# The backtracking array
|
905 |
+
backtrack = np.zeros(sim.shape, dtype=np.int8)
|
906 |
+
|
907 |
+
# These are place-holder arrays to limit the points being considered
|
908 |
+
# at each step of the DP
|
909 |
+
#
|
910 |
+
# If knight moves are enabled, values are indexed according to
|
911 |
+
# [(-1,-1), (-1, -2), (-2, -1)]
|
912 |
+
#
|
913 |
+
# If knight moves are disabled, then only the first entry is used.
|
914 |
+
#
|
915 |
+
# Using dummy vectors here makes the code a bit cleaner down below.
|
916 |
+
sim_values = np.zeros(3)
|
917 |
+
score_values = np.zeros(3)
|
918 |
+
vec = np.zeros(3)
|
919 |
+
|
920 |
+
if knight:
|
921 |
+
# Initial limit is for the base case: diagonal + one knight
|
922 |
+
init_limit = 2
|
923 |
+
|
924 |
+
# Otherwise, we have 3 positions
|
925 |
+
limit = 3
|
926 |
+
else:
|
927 |
+
init_limit = 1
|
928 |
+
limit = 1
|
929 |
+
|
930 |
+
# backtracking rubric:
|
931 |
+
# 0 ==> diagonal move
|
932 |
+
# 1 ==> knight move up
|
933 |
+
# 2 ==> knight move left
|
934 |
+
# -1 ==> reset without inclusion
|
935 |
+
# -2 ==> reset with inclusion (ie positive value at init)
|
936 |
+
|
937 |
+
# Initialize the first row and column with the data
|
938 |
+
score[0, :] = sim[0, :]
|
939 |
+
score[:, 0] = sim[:, 0]
|
940 |
+
|
941 |
+
# backtracking initialization: the first row and column are all resets
|
942 |
+
# if there's a positive link here, it's an inclusive reset
|
943 |
+
for i in range(sim.shape[0]):
|
944 |
+
if sim[i, 0]:
|
945 |
+
backtrack[i, 0] = -2
|
946 |
+
else:
|
947 |
+
backtrack[i, 0] = -1
|
948 |
+
|
949 |
+
for j in range(sim.shape[1]):
|
950 |
+
if sim[0, j]:
|
951 |
+
backtrack[0, j] = -2
|
952 |
+
else:
|
953 |
+
backtrack[0, j] = -1
|
954 |
+
|
955 |
+
# Initialize the 1-1 case using only the diagonal
|
956 |
+
if sim[1, 1] > 0:
|
957 |
+
score[1, 1] = score[0, 0] + sim[1, 1]
|
958 |
+
backtrack[1, 1] = 0
|
959 |
+
else:
|
960 |
+
link = sim[0, 0] > 0
|
961 |
+
score[1, 1] = max(0, score[0, 0] - (link) * gap_onset - (~link) * gap_extend)
|
962 |
+
if score[1, 1] > 0:
|
963 |
+
backtrack[1, 1] = 0
|
964 |
+
else:
|
965 |
+
backtrack[1, 1] = -1
|
966 |
+
|
967 |
+
# Initialize the second row with diagonal and left-knight moves
|
968 |
+
i = 1
|
969 |
+
for j in range(2, sim.shape[1]):
|
970 |
+
score_values[:-1] = (score[i - 1, j - 1], score[i - 1, j - 2])
|
971 |
+
sim_values[:-1] = (sim[i - 1, j - 1], sim[i - 1, j - 2])
|
972 |
+
t_values = sim_values > 0
|
973 |
+
if sim[i, j] > 0:
|
974 |
+
backtrack[i, j] = np.argmax(score_values[:init_limit])
|
975 |
+
score[i, j] = score_values[backtrack[i, j]] + sim[i, j] # or + 1 for binary
|
976 |
+
else:
|
977 |
+
vec[:init_limit] = (
|
978 |
+
score_values[:init_limit]
|
979 |
+
- t_values[:init_limit] * gap_onset
|
980 |
+
- (~t_values[:init_limit]) * gap_extend
|
981 |
+
)
|
982 |
+
|
983 |
+
backtrack[i, j] = np.argmax(vec[:init_limit])
|
984 |
+
score[i, j] = max(0, vec[backtrack[i, j]])
|
985 |
+
# Is it a reset?
|
986 |
+
if score[i, j] == 0:
|
987 |
+
backtrack[i, j] = -1
|
988 |
+
|
989 |
+
# Initialize the second column with diagonal and up-knight moves
|
990 |
+
j = 1
|
991 |
+
for i in range(2, sim.shape[0]):
|
992 |
+
score_values[:-1] = (score[i - 1, j - 1], score[i - 2, j - 1])
|
993 |
+
sim_values[:-1] = (sim[i - 1, j - 1], sim[i - 2, j - 1])
|
994 |
+
t_values = sim_values > 0
|
995 |
+
if sim[i, j] > 0:
|
996 |
+
backtrack[i, j] = np.argmax(score_values[:init_limit])
|
997 |
+
score[i, j] = score_values[backtrack[i, j]] + sim[i, j] # or + 1 for binary
|
998 |
+
|
999 |
+
else:
|
1000 |
+
vec[:init_limit] = (
|
1001 |
+
score_values[:init_limit]
|
1002 |
+
- t_values[:init_limit] * gap_onset
|
1003 |
+
- (~t_values[:init_limit]) * gap_extend
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
backtrack[i, j] = np.argmax(vec[:init_limit])
|
1007 |
+
score[i, j] = max(0, vec[backtrack[i, j]])
|
1008 |
+
# Is it a reset?
|
1009 |
+
if score[i, j] == 0:
|
1010 |
+
backtrack[i, j] = -1
|
1011 |
+
|
1012 |
+
# Now fill in the rest of the table
|
1013 |
+
for i in range(2, sim.shape[0]):
|
1014 |
+
for j in range(2, sim.shape[1]):
|
1015 |
+
score_values[:] = (
|
1016 |
+
score[i - 1, j - 1],
|
1017 |
+
score[i - 1, j - 2],
|
1018 |
+
score[i - 2, j - 1],
|
1019 |
+
)
|
1020 |
+
sim_values[:] = (sim[i - 1, j - 1], sim[i - 1, j - 2], sim[i - 2, j - 1])
|
1021 |
+
t_values = sim_values > 0
|
1022 |
+
if sim[i, j] > 0:
|
1023 |
+
# if knight is true, it's max of (-1,-1), (-1, -2), (-2, -1)
|
1024 |
+
# otherwise, it's just the diagonal move (-1, -1)
|
1025 |
+
# for backtracking purposes, if the max is 0 then it's the start of a new sequence
|
1026 |
+
# if the max is non-zero, then we extend the existing sequence
|
1027 |
+
backtrack[i, j] = np.argmax(score_values[:limit])
|
1028 |
+
score[i, j] = (
|
1029 |
+
score_values[backtrack[i, j]] + sim[i, j]
|
1030 |
+
) # or + 1 for binary
|
1031 |
+
|
1032 |
+
else:
|
1033 |
+
# if the max of our options is negative, then it's a hard reset
|
1034 |
+
# otherwise, it's a skip move
|
1035 |
+
vec[:limit] = (
|
1036 |
+
score_values[:limit]
|
1037 |
+
- t_values[:limit] * gap_onset
|
1038 |
+
- (~t_values[:limit]) * gap_extend
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
backtrack[i, j] = np.argmax(vec[:limit])
|
1042 |
+
score[i, j] = max(0, vec[backtrack[i, j]])
|
1043 |
+
# Is it a reset?
|
1044 |
+
if score[i, j] == 0:
|
1045 |
+
backtrack[i, j] = -1
|
1046 |
+
|
1047 |
+
return score, backtrack
|
1048 |
+
|
1049 |
+
|
1050 |
+
def __rqa_backtrack(score, pointers):
|
1051 |
+
"""RQA path backtracking
|
1052 |
+
|
1053 |
+
Given the score matrix and backtracking index array,
|
1054 |
+
reconstruct the optimal path.
|
1055 |
+
"""
|
1056 |
+
|
1057 |
+
# backtracking rubric:
|
1058 |
+
# 0 ==> diagonal move
|
1059 |
+
# 1 ==> knight move up
|
1060 |
+
# 2 ==> knight move left
|
1061 |
+
# -1 ==> reset (sim = 0)
|
1062 |
+
# -2 ==> start of sequence (sim > 0)
|
1063 |
+
|
1064 |
+
# This array maps the backtracking values to the
|
1065 |
+
# relative index offsets
|
1066 |
+
offsets = [(-1, -1), (-1, -2), (-2, -1)]
|
1067 |
+
|
1068 |
+
# Find the maximum to end the path
|
1069 |
+
idx = list(np.unravel_index(np.argmax(score), score.shape))
|
1070 |
+
|
1071 |
+
# Construct the path
|
1072 |
+
path: List = []
|
1073 |
+
while True:
|
1074 |
+
bt_index = pointers[tuple(idx)]
|
1075 |
+
|
1076 |
+
# A -1 indicates a non-inclusive reset
|
1077 |
+
# this can only happen when sim[idx] == 0,
|
1078 |
+
# and a reset with zero score should not be included
|
1079 |
+
# in the path. In this case, we're done.
|
1080 |
+
if bt_index == -1:
|
1081 |
+
break
|
1082 |
+
|
1083 |
+
# Other bt_index values are okay for inclusion
|
1084 |
+
path.insert(0, idx)
|
1085 |
+
|
1086 |
+
# -2 indicates beginning of sequence,
|
1087 |
+
# so we can't backtrack any further
|
1088 |
+
if bt_index == -2:
|
1089 |
+
break
|
1090 |
+
|
1091 |
+
# Otherwise, prepend this index and continue
|
1092 |
+
idx = [idx[_] + offsets[bt_index][_] for _ in range(len(idx))]
|
1093 |
+
|
1094 |
+
# If there's no alignment path at all, eg an empty cross-similarity
|
1095 |
+
# matrix, return a properly shaped and typed array
|
1096 |
+
if not path:
|
1097 |
+
return np.empty((0, 2), dtype=np.uint)
|
1098 |
+
|
1099 |
+
return np.asarray(path, dtype=np.uint)
|
1100 |
+
|
1101 |
+
|
1102 |
+
@jit(nopython=True, cache=False) # type: ignore
|
1103 |
+
def _viterbi(
|
1104 |
+
log_prob: np.ndarray, log_trans: np.ndarray, log_p_init: np.ndarray
|
1105 |
+
) -> Tuple[np.ndarray, np.ndarray]: # pragma: no cover
|
1106 |
+
"""Core Viterbi algorithm.
|
1107 |
+
|
1108 |
+
This is intended for internal use only.
|
1109 |
+
|
1110 |
+
Parameters
|
1111 |
+
----------
|
1112 |
+
log_prob : np.ndarray [shape=(T, m)]
|
1113 |
+
``log_prob[t, s]`` is the conditional log-likelihood
|
1114 |
+
``log P[X = X(t) | State(t) = s]``
|
1115 |
+
log_trans : np.ndarray [shape=(m, m)]
|
1116 |
+
The log transition matrix
|
1117 |
+
``log_trans[i, j] = log P[State(t+1) = j | State(t) = i]``
|
1118 |
+
log_p_init : np.ndarray [shape=(m,)]
|
1119 |
+
log of the initial state distribution
|
1120 |
+
|
1121 |
+
Returns
|
1122 |
+
-------
|
1123 |
+
None
|
1124 |
+
All computations are performed in-place on ``state, value, ptr``.
|
1125 |
+
"""
|
1126 |
+
n_steps, n_states = log_prob.shape
|
1127 |
+
|
1128 |
+
state = np.zeros(n_steps, dtype=np.uint16)
|
1129 |
+
value = np.zeros((n_steps, n_states), dtype=np.float64)
|
1130 |
+
ptr = np.zeros((n_steps, n_states), dtype=np.uint16)
|
1131 |
+
|
1132 |
+
# factor in initial state distribution
|
1133 |
+
value[0] = log_prob[0] + log_p_init
|
1134 |
+
|
1135 |
+
for t in range(1, n_steps):
|
1136 |
+
# Want V[t, j] <- p[t, j] * max_k V[t-1, k] * A[k, j]
|
1137 |
+
# assume at time t-1 we were in state k
|
1138 |
+
# transition k -> j
|
1139 |
+
|
1140 |
+
# Broadcast over rows:
|
1141 |
+
# Tout[k, j] = V[t-1, k] * A[k, j]
|
1142 |
+
# then take the max over columns
|
1143 |
+
# We'll do this in log-space for stability
|
1144 |
+
|
1145 |
+
trans_out = value[t - 1] + log_trans.T
|
1146 |
+
|
1147 |
+
# Unroll the max/argmax loop to enable numba support
|
1148 |
+
for j in range(n_states):
|
1149 |
+
ptr[t, j] = np.argmax(trans_out[j])
|
1150 |
+
# value[t, j] = log_prob[t, j] + np.max(trans_out[j])
|
1151 |
+
value[t, j] = log_prob[t, j] + trans_out[j, ptr[t][j]]
|
1152 |
+
|
1153 |
+
# Now roll backward
|
1154 |
+
|
1155 |
+
# Get the last state
|
1156 |
+
state[-1] = np.argmax(value[-1])
|
1157 |
+
|
1158 |
+
for t in range(n_steps - 2, -1, -1):
|
1159 |
+
state[t] = ptr[t + 1, state[t + 1]]
|
1160 |
+
|
1161 |
+
logp = value[-1:, state[-1]]
|
1162 |
+
|
1163 |
+
return state, logp
|
1164 |
+
|
1165 |
+
|
1166 |
+
@overload
|
1167 |
+
def viterbi(
|
1168 |
+
prob: np.ndarray,
|
1169 |
+
transition: np.ndarray,
|
1170 |
+
*,
|
1171 |
+
p_init: Optional[np.ndarray] = ...,
|
1172 |
+
return_logp: Literal[True],
|
1173 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
1174 |
+
...
|
1175 |
+
|
1176 |
+
|
1177 |
+
@overload
|
1178 |
+
def viterbi(
|
1179 |
+
prob: np.ndarray,
|
1180 |
+
transition: np.ndarray,
|
1181 |
+
*,
|
1182 |
+
p_init: Optional[np.ndarray] = ...,
|
1183 |
+
return_logp: Literal[False] = ...,
|
1184 |
+
) -> np.ndarray:
|
1185 |
+
...
|
1186 |
+
|
1187 |
+
|
1188 |
+
def viterbi(
|
1189 |
+
prob: np.ndarray,
|
1190 |
+
transition: np.ndarray,
|
1191 |
+
*,
|
1192 |
+
p_init: Optional[np.ndarray] = None,
|
1193 |
+
return_logp: bool = False,
|
1194 |
+
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
|
1195 |
+
"""Viterbi decoding from observation likelihoods.
|
1196 |
+
|
1197 |
+
Given a sequence of observation likelihoods ``prob[s, t]``,
|
1198 |
+
indicating the conditional likelihood of seeing the observation
|
1199 |
+
at time ``t`` from state ``s``, and a transition matrix
|
1200 |
+
``transition[i, j]`` which encodes the conditional probability of
|
1201 |
+
moving from state ``i`` to state ``j``, the Viterbi algorithm [#]_ computes
|
1202 |
+
the most likely sequence of states from the observations.
|
1203 |
+
|
1204 |
+
.. [#] Viterbi, Andrew. "Error bounds for convolutional codes and an
|
1205 |
+
asymptotically optimum decoding algorithm."
|
1206 |
+
IEEE transactions on Information Theory 13.2 (1967): 260-269.
|
1207 |
+
|
1208 |
+
Parameters
|
1209 |
+
----------
|
1210 |
+
prob : np.ndarray [shape=(..., n_states, n_steps), non-negative]
|
1211 |
+
``prob[..., s, t]`` is the probability of observation at time ``t``
|
1212 |
+
being generated by state ``s``.
|
1213 |
+
transition : np.ndarray [shape=(n_states, n_states), non-negative]
|
1214 |
+
``transition[i, j]`` is the probability of a transition from i->j.
|
1215 |
+
Each row must sum to 1.
|
1216 |
+
p_init : np.ndarray [shape=(n_states,)]
|
1217 |
+
Optional: initial state distribution.
|
1218 |
+
If not provided, a uniform distribution is assumed.
|
1219 |
+
return_logp : bool
|
1220 |
+
If ``True``, return the log-likelihood of the state sequence.
|
1221 |
+
|
1222 |
+
Returns
|
1223 |
+
-------
|
1224 |
+
Either ``states`` or ``(states, logp)``:
|
1225 |
+
states : np.ndarray [shape=(..., n_steps,)]
|
1226 |
+
The most likely state sequence.
|
1227 |
+
If ``prob`` contains multiple channels of input, then each channel is
|
1228 |
+
decoded independently.
|
1229 |
+
logp : scalar [float] or np.ndarray
|
1230 |
+
If ``return_logp=True``, the log probability of ``states`` given
|
1231 |
+
the observations.
|
1232 |
+
|
1233 |
+
See Also
|
1234 |
+
--------
|
1235 |
+
viterbi_discriminative : Viterbi decoding from state likelihoods
|
1236 |
+
|
1237 |
+
Examples
|
1238 |
+
--------
|
1239 |
+
Example from https://en.wikipedia.org/wiki/Viterbi_algorithm#Example
|
1240 |
+
|
1241 |
+
In this example, we have two states ``healthy`` and ``fever``, with
|
1242 |
+
initial probabilities 60% and 40%.
|
1243 |
+
|
1244 |
+
We have three observation possibilities: ``normal``, ``cold``, and
|
1245 |
+
``dizzy``, whose probabilities given each state are:
|
1246 |
+
|
1247 |
+
``healthy => {normal: 50%, cold: 40%, dizzy: 10%}`` and
|
1248 |
+
``fever => {normal: 10%, cold: 30%, dizzy: 60%}``
|
1249 |
+
|
1250 |
+
Finally, we have transition probabilities:
|
1251 |
+
|
1252 |
+
``healthy => healthy (70%)`` and
|
1253 |
+
``fever => fever (60%)``.
|
1254 |
+
|
1255 |
+
Over three days, we observe the sequence ``[normal, cold, dizzy]``,
|
1256 |
+
and wish to know the maximum likelihood assignment of states for the
|
1257 |
+
corresponding days, which we compute with the Viterbi algorithm below.
|
1258 |
+
|
1259 |
+
>>> p_init = np.array([0.6, 0.4])
|
1260 |
+
>>> p_emit = np.array([[0.5, 0.4, 0.1],
|
1261 |
+
... [0.1, 0.3, 0.6]])
|
1262 |
+
>>> p_trans = np.array([[0.7, 0.3], [0.4, 0.6]])
|
1263 |
+
>>> path, logp = librosa.sequence.viterbi(p_emit, p_trans, p_init=p_init,
|
1264 |
+
... return_logp=True)
|
1265 |
+
>>> print(logp, path)
|
1266 |
+
-4.19173690823075 [0 0 1]
|
1267 |
+
"""
|
1268 |
+
|
1269 |
+
n_states, n_steps = prob.shape[-2:]
|
1270 |
+
|
1271 |
+
if transition.shape != (n_states, n_states):
|
1272 |
+
raise ParameterError(
|
1273 |
+
f"transition.shape={transition.shape}, must be "
|
1274 |
+
f"(n_states, n_states)={n_states, n_states}"
|
1275 |
+
)
|
1276 |
+
|
1277 |
+
if np.any(transition < 0) or not np.allclose(transition.sum(axis=1), 1):
|
1278 |
+
raise ParameterError(
|
1279 |
+
"Invalid transition matrix: must be non-negative "
|
1280 |
+
"and sum to 1 on each row."
|
1281 |
+
)
|
1282 |
+
|
1283 |
+
if np.any(prob < 0) or np.any(prob > 1):
|
1284 |
+
raise ParameterError("Invalid probability values: must be between 0 and 1.")
|
1285 |
+
|
1286 |
+
# Compute log-likelihoods while avoiding log-underflow
|
1287 |
+
epsilon = tiny(prob)
|
1288 |
+
|
1289 |
+
if p_init is None:
|
1290 |
+
p_init = np.empty(n_states)
|
1291 |
+
p_init.fill(1.0 / n_states)
|
1292 |
+
elif (
|
1293 |
+
np.any(p_init < 0)
|
1294 |
+
or not np.allclose(p_init.sum(), 1)
|
1295 |
+
or p_init.shape != (n_states,)
|
1296 |
+
):
|
1297 |
+
raise ParameterError(f"Invalid initial state distribution: p_init={p_init}")
|
1298 |
+
|
1299 |
+
log_trans = np.log(transition + epsilon)
|
1300 |
+
log_prob = np.log(prob + epsilon)
|
1301 |
+
log_p_init = np.log(p_init + epsilon)
|
1302 |
+
|
1303 |
+
def _helper(lp):
|
1304 |
+
# Transpose input
|
1305 |
+
_state, logp = _viterbi(lp.T, log_trans, log_p_init)
|
1306 |
+
# Transpose outputs for return
|
1307 |
+
return _state.T, logp
|
1308 |
+
|
1309 |
+
states: np.ndarray
|
1310 |
+
logp: np.ndarray
|
1311 |
+
|
1312 |
+
if log_prob.ndim == 2:
|
1313 |
+
states, logp = _helper(log_prob)
|
1314 |
+
else:
|
1315 |
+
# Vectorize the helper
|
1316 |
+
__viterbi = np.vectorize(
|
1317 |
+
_helper, otypes=[np.uint16, np.float64], signature="(s,t)->(t),(1)"
|
1318 |
+
)
|
1319 |
+
|
1320 |
+
states, logp = __viterbi(log_prob)
|
1321 |
+
|
1322 |
+
# Flatten out the trailing dimension introduced by vectorization
|
1323 |
+
logp = logp[..., 0]
|
1324 |
+
|
1325 |
+
if return_logp:
|
1326 |
+
return states, logp
|
1327 |
+
|
1328 |
+
return states
|
1329 |
+
|
1330 |
+
|
1331 |
+
@overload
|
1332 |
+
def viterbi_discriminative(
|
1333 |
+
prob: np.ndarray,
|
1334 |
+
transition: np.ndarray,
|
1335 |
+
*,
|
1336 |
+
p_state: Optional[np.ndarray] = ...,
|
1337 |
+
p_init: Optional[np.ndarray] = ...,
|
1338 |
+
return_logp: Literal[False] = ...,
|
1339 |
+
) -> np.ndarray:
|
1340 |
+
...
|
1341 |
+
|
1342 |
+
|
1343 |
+
@overload
|
1344 |
+
def viterbi_discriminative(
|
1345 |
+
prob: np.ndarray,
|
1346 |
+
transition: np.ndarray,
|
1347 |
+
*,
|
1348 |
+
p_state: Optional[np.ndarray] = ...,
|
1349 |
+
p_init: Optional[np.ndarray] = ...,
|
1350 |
+
return_logp: Literal[True],
|
1351 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
1352 |
+
...
|
1353 |
+
|
1354 |
+
|
1355 |
+
@overload
|
1356 |
+
def viterbi_discriminative(
|
1357 |
+
prob: np.ndarray,
|
1358 |
+
transition: np.ndarray,
|
1359 |
+
*,
|
1360 |
+
p_state: Optional[np.ndarray] = ...,
|
1361 |
+
p_init: Optional[np.ndarray] = ...,
|
1362 |
+
return_logp: bool,
|
1363 |
+
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
|
1364 |
+
...
|
1365 |
+
|
1366 |
+
|
1367 |
+
def viterbi_discriminative(
|
1368 |
+
prob: np.ndarray,
|
1369 |
+
transition: np.ndarray,
|
1370 |
+
*,
|
1371 |
+
p_state: Optional[np.ndarray] = None,
|
1372 |
+
p_init: Optional[np.ndarray] = None,
|
1373 |
+
return_logp: bool = False,
|
1374 |
+
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
|
1375 |
+
"""Viterbi decoding from discriminative state predictions.
|
1376 |
+
|
1377 |
+
Given a sequence of conditional state predictions ``prob[s, t]``,
|
1378 |
+
indicating the conditional likelihood of state ``s`` given the
|
1379 |
+
observation at time ``t``, and a transition matrix ``transition[i, j]``
|
1380 |
+
which encodes the conditional probability of moving from state ``i``
|
1381 |
+
to state ``j``, the Viterbi algorithm computes the most likely sequence
|
1382 |
+
of states from the observations.
|
1383 |
+
|
1384 |
+
This implementation uses the standard Viterbi decoding algorithm
|
1385 |
+
for observation likelihood sequences, under the assumption that
|
1386 |
+
``P[Obs(t) | State(t) = s]`` is proportional to
|
1387 |
+
``P[State(t) = s | Obs(t)] / P[State(t) = s]``, where the denominator
|
1388 |
+
is the marginal probability of state ``s`` occurring as given by ``p_state``.
|
1389 |
+
|
1390 |
+
Note that because the denominator ``P[State(t) = s]`` is not explicitly
|
1391 |
+
calculated, the resulting probabilities (or log-probabilities) are not
|
1392 |
+
normalized. If using the `return_logp=True` option (see below),
|
1393 |
+
be aware that the "probabilities" may not sum to (and may exceed) 1.
|
1394 |
+
|
1395 |
+
Parameters
|
1396 |
+
----------
|
1397 |
+
prob : np.ndarray [shape=(..., n_states, n_steps), non-negative]
|
1398 |
+
``prob[s, t]`` is the probability of state ``s`` conditional on
|
1399 |
+
the observation at time ``t``.
|
1400 |
+
Must be non-negative and sum to 1 along each column.
|
1401 |
+
transition : np.ndarray [shape=(n_states, n_states), non-negative]
|
1402 |
+
``transition[i, j]`` is the probability of a transition from i->j.
|
1403 |
+
Each row must sum to 1.
|
1404 |
+
p_state : np.ndarray [shape=(n_states,)]
|
1405 |
+
Optional: marginal probability distribution over states,
|
1406 |
+
must be non-negative and sum to 1.
|
1407 |
+
If not provided, a uniform distribution is assumed.
|
1408 |
+
p_init : np.ndarray [shape=(n_states,)]
|
1409 |
+
Optional: initial state distribution.
|
1410 |
+
If not provided, it is assumed to be uniform.
|
1411 |
+
return_logp : bool
|
1412 |
+
If ``True``, return the log-likelihood of the state sequence.
|
1413 |
+
|
1414 |
+
Returns
|
1415 |
+
-------
|
1416 |
+
Either ``states`` or ``(states, logp)``:
|
1417 |
+
states : np.ndarray [shape=(..., n_steps,)]
|
1418 |
+
The most likely state sequence.
|
1419 |
+
If ``prob`` contains multiple input channels,
|
1420 |
+
then each channel is decoded independently.
|
1421 |
+
logp : scalar [float] or np.ndarray
|
1422 |
+
If ``return_logp=True``, the (unnormalized) log probability
|
1423 |
+
of ``states`` given the observations.
|
1424 |
+
|
1425 |
+
See Also
|
1426 |
+
--------
|
1427 |
+
viterbi :
|
1428 |
+
Viterbi decoding from observation likelihoods
|
1429 |
+
viterbi_binary :
|
1430 |
+
Viterbi decoding for multi-label, conditional state likelihoods
|
1431 |
+
|
1432 |
+
Examples
|
1433 |
+
--------
|
1434 |
+
This example constructs a simple, template-based discriminative chord estimator,
|
1435 |
+
using CENS chroma as input features.
|
1436 |
+
|
1437 |
+
.. note:: this chord model is not accurate enough to use in practice. It is only
|
1438 |
+
intended to demonstrate how to use discriminative Viterbi decoding.
|
1439 |
+
|
1440 |
+
>>> # Create templates for major, minor, and no-chord qualities
|
1441 |
+
>>> maj_template = np.array([1,0,0, 0,1,0, 0,1,0, 0,0,0])
|
1442 |
+
>>> min_template = np.array([1,0,0, 1,0,0, 0,1,0, 0,0,0])
|
1443 |
+
>>> N_template = np.array([1,1,1, 1,1,1, 1,1,1, 1,1,1.]) / 4.
|
1444 |
+
>>> # Generate the weighting matrix that maps chroma to labels
|
1445 |
+
>>> weights = np.zeros((25, 12), dtype=float)
|
1446 |
+
>>> labels = ['C:maj', 'C#:maj', 'D:maj', 'D#:maj', 'E:maj', 'F:maj',
|
1447 |
+
... 'F#:maj', 'G:maj', 'G#:maj', 'A:maj', 'A#:maj', 'B:maj',
|
1448 |
+
... 'C:min', 'C#:min', 'D:min', 'D#:min', 'E:min', 'F:min',
|
1449 |
+
... 'F#:min', 'G:min', 'G#:min', 'A:min', 'A#:min', 'B:min',
|
1450 |
+
... 'N']
|
1451 |
+
>>> for c in range(12):
|
1452 |
+
... weights[c, :] = np.roll(maj_template, c) # c:maj
|
1453 |
+
... weights[c + 12, :] = np.roll(min_template, c) # c:min
|
1454 |
+
>>> weights[-1] = N_template # the last row is the no-chord class
|
1455 |
+
>>> # Make a self-loop transition matrix over 25 states
|
1456 |
+
>>> trans = librosa.sequence.transition_loop(25, 0.9)
|
1457 |
+
|
1458 |
+
>>> # Load in audio and make features
|
1459 |
+
>>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=15)
|
1460 |
+
>>> # Suppress percussive elements
|
1461 |
+
>>> y = librosa.effects.harmonic(y, margin=4)
|
1462 |
+
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
|
1463 |
+
>>> # Map chroma (observations) to class (state) likelihoods
|
1464 |
+
>>> probs = np.exp(weights.dot(chroma)) # P[class | chroma] ~= exp(template' chroma)
|
1465 |
+
>>> probs /= probs.sum(axis=0, keepdims=True) # probabilities must sum to 1 in each column
|
1466 |
+
>>> # Compute independent frame-wise estimates
|
1467 |
+
>>> chords_ind = np.argmax(probs, axis=0)
|
1468 |
+
>>> # And viterbi estimates
|
1469 |
+
>>> chords_vit = librosa.sequence.viterbi_discriminative(probs, trans)
|
1470 |
+
|
1471 |
+
>>> # Plot the features and prediction map
|
1472 |
+
>>> import matplotlib.pyplot as plt
|
1473 |
+
>>> fig, ax = plt.subplots(nrows=2)
|
1474 |
+
>>> librosa.display.specshow(chroma, x_axis='time', y_axis='chroma', ax=ax[0])
|
1475 |
+
>>> librosa.display.specshow(weights, x_axis='chroma', ax=ax[1])
|
1476 |
+
>>> ax[1].set(yticks=np.arange(25) + 0.5, yticklabels=labels, ylabel='Chord')
|
1477 |
+
|
1478 |
+
>>> # And plot the results
|
1479 |
+
>>> fig, ax = plt.subplots()
|
1480 |
+
>>> librosa.display.specshow(probs, x_axis='time', cmap='gray', ax=ax)
|
1481 |
+
>>> times = librosa.times_like(chords_vit)
|
1482 |
+
>>> ax.scatter(times, chords_ind + 0.25, color='lime', alpha=0.5, marker='+',
|
1483 |
+
... s=15, label='Independent')
|
1484 |
+
>>> ax.scatter(times, chords_vit - 0.25, color='deeppink', alpha=0.5, marker='o',
|
1485 |
+
... s=15, label='Viterbi')
|
1486 |
+
>>> ax.set(yticks=np.unique(chords_vit),
|
1487 |
+
... yticklabels=[labels[i] for i in np.unique(chords_vit)])
|
1488 |
+
>>> ax.legend()
|
1489 |
+
"""
|
1490 |
+
|
1491 |
+
n_states, n_steps = prob.shape[-2:]
|
1492 |
+
|
1493 |
+
if transition.shape != (n_states, n_states):
|
1494 |
+
raise ParameterError(
|
1495 |
+
f"transition.shape={transition.shape}, must be "
|
1496 |
+
f"(n_states, n_states)={n_states, n_states}"
|
1497 |
+
)
|
1498 |
+
|
1499 |
+
if np.any(transition < 0) or not np.allclose(transition.sum(axis=1), 1):
|
1500 |
+
raise ParameterError(
|
1501 |
+
"Invalid transition matrix: must be non-negative "
|
1502 |
+
"and sum to 1 on each row."
|
1503 |
+
)
|
1504 |
+
|
1505 |
+
if np.any(prob < 0) or not np.allclose(prob.sum(axis=-2), 1):
|
1506 |
+
raise ParameterError(
|
1507 |
+
"Invalid probability values: each column must "
|
1508 |
+
"sum to 1 and be non-negative"
|
1509 |
+
)
|
1510 |
+
|
1511 |
+
# Compute log-likelihoods while avoiding log-underflow
|
1512 |
+
epsilon = tiny(prob)
|
1513 |
+
|
1514 |
+
# Compute marginal log probabilities while avoiding underflow
|
1515 |
+
if p_state is None:
|
1516 |
+
p_state = np.empty(n_states)
|
1517 |
+
p_state.fill(1.0 / n_states)
|
1518 |
+
elif p_state.shape != (n_states,):
|
1519 |
+
raise ParameterError(
|
1520 |
+
"Marginal distribution p_state must have shape (n_states,). "
|
1521 |
+
f"Got p_state.shape={p_state.shape}"
|
1522 |
+
)
|
1523 |
+
elif np.any(p_state < 0) or not np.allclose(p_state.sum(axis=-1), 1):
|
1524 |
+
raise ParameterError(f"Invalid marginal state distribution: p_state={p_state}")
|
1525 |
+
|
1526 |
+
if p_init is None:
|
1527 |
+
p_init = np.empty(n_states)
|
1528 |
+
p_init.fill(1.0 / n_states)
|
1529 |
+
elif (
|
1530 |
+
np.any(p_init < 0)
|
1531 |
+
or not np.allclose(p_init.sum(), 1)
|
1532 |
+
or p_init.shape != (n_states,)
|
1533 |
+
):
|
1534 |
+
raise ParameterError(f"Invalid initial state distribution: p_init={p_init}")
|
1535 |
+
|
1536 |
+
# By Bayes' rule, P[X | Y] * P[Y] = P[Y | X] * P[X]
|
1537 |
+
# P[X] is constant for the sake of maximum likelihood inference
|
1538 |
+
# and P[Y] is given by the marginal distribution p_state.
|
1539 |
+
#
|
1540 |
+
# So we have P[X | y] \propto P[Y | x] / P[Y]
|
1541 |
+
# if X = observation and Y = states, this can be done in log space as
|
1542 |
+
# log P[X | y] \propto \log P[Y | x] - \log P[Y]
|
1543 |
+
log_p_init = np.log(p_init + epsilon)
|
1544 |
+
log_trans = np.log(transition + epsilon)
|
1545 |
+
log_marginal = np.log(p_state + epsilon)
|
1546 |
+
|
1547 |
+
# reshape to broadcast against prob
|
1548 |
+
log_marginal = expand_to(log_marginal, ndim=prob.ndim, axes=-2)
|
1549 |
+
|
1550 |
+
log_prob = np.log(prob + epsilon) - log_marginal
|
1551 |
+
|
1552 |
+
def _helper(lp):
|
1553 |
+
# Transpose input
|
1554 |
+
_state, logp = _viterbi(lp.T, log_trans, log_p_init)
|
1555 |
+
# Transpose outputs for return
|
1556 |
+
return _state.T, logp
|
1557 |
+
|
1558 |
+
states: np.ndarray
|
1559 |
+
logp: np.ndarray
|
1560 |
+
if log_prob.ndim == 2:
|
1561 |
+
states, logp = _helper(log_prob)
|
1562 |
+
else:
|
1563 |
+
# Vectorize the helper
|
1564 |
+
__viterbi = np.vectorize(
|
1565 |
+
_helper, otypes=[np.uint16, np.float64], signature="(s,t)->(t),(1)"
|
1566 |
+
)
|
1567 |
+
|
1568 |
+
states, logp = __viterbi(log_prob)
|
1569 |
+
|
1570 |
+
# Flatten out the trailing dimension
|
1571 |
+
logp = logp[..., 0]
|
1572 |
+
|
1573 |
+
if return_logp:
|
1574 |
+
return states, logp
|
1575 |
+
|
1576 |
+
return states
|
1577 |
+
|
1578 |
+
|
1579 |
+
@overload
|
1580 |
+
def viterbi_binary(
|
1581 |
+
prob: np.ndarray,
|
1582 |
+
transition: np.ndarray,
|
1583 |
+
*,
|
1584 |
+
p_state: Optional[np.ndarray] = ...,
|
1585 |
+
p_init: Optional[np.ndarray] = ...,
|
1586 |
+
return_logp: Literal[False] = ...,
|
1587 |
+
) -> np.ndarray:
|
1588 |
+
...
|
1589 |
+
|
1590 |
+
|
1591 |
+
@overload
|
1592 |
+
def viterbi_binary(
|
1593 |
+
prob: np.ndarray,
|
1594 |
+
transition: np.ndarray,
|
1595 |
+
*,
|
1596 |
+
p_state: Optional[np.ndarray] = ...,
|
1597 |
+
p_init: Optional[np.ndarray] = ...,
|
1598 |
+
return_logp: Literal[True],
|
1599 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
1600 |
+
...
|
1601 |
+
|
1602 |
+
|
1603 |
+
@overload
|
1604 |
+
def viterbi_binary(
|
1605 |
+
prob: np.ndarray,
|
1606 |
+
transition: np.ndarray,
|
1607 |
+
*,
|
1608 |
+
p_state: Optional[np.ndarray] = ...,
|
1609 |
+
p_init: Optional[np.ndarray] = ...,
|
1610 |
+
return_logp: bool = ...,
|
1611 |
+
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
|
1612 |
+
...
|
1613 |
+
|
1614 |
+
|
1615 |
+
def viterbi_binary(
|
1616 |
+
prob: np.ndarray,
|
1617 |
+
transition: np.ndarray,
|
1618 |
+
*,
|
1619 |
+
p_state: Optional[np.ndarray] = None,
|
1620 |
+
p_init: Optional[np.ndarray] = None,
|
1621 |
+
return_logp: bool = False,
|
1622 |
+
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
|
1623 |
+
"""Viterbi decoding from binary (multi-label), discriminative state predictions.
|
1624 |
+
|
1625 |
+
Given a sequence of conditional state predictions ``prob[s, t]``,
|
1626 |
+
indicating the conditional likelihood of state ``s`` being active
|
1627 |
+
conditional on observation at time ``t``, and a 2*2 transition matrix
|
1628 |
+
``transition`` which encodes the conditional probability of moving from
|
1629 |
+
state ``s`` to state ``~s`` (not-``s``), the Viterbi algorithm computes the
|
1630 |
+
most likely sequence of states from the observations.
|
1631 |
+
|
1632 |
+
This function differs from `viterbi_discriminative` in that it does not assume the
|
1633 |
+
states to be mutually exclusive. `viterbi_binary` is implemented by
|
1634 |
+
transforming the multi-label decoding problem to a collection
|
1635 |
+
of binary Viterbi problems (one for each *state* or label).
|
1636 |
+
|
1637 |
+
The output is a binary matrix ``states[s, t]`` indicating whether each
|
1638 |
+
state ``s`` is active at time ``t``.
|
1639 |
+
|
1640 |
+
Like `viterbi_discriminative`, the probabilities of the optimal state sequences
|
1641 |
+
are not normalized here. If using the `return_logp=True` option (see below),
|
1642 |
+
be aware that the "probabilities" may not sum to (and may exceed) 1.
|
1643 |
+
|
1644 |
+
Parameters
|
1645 |
+
----------
|
1646 |
+
prob : np.ndarray [shape=(..., n_steps,) or (..., n_states, n_steps)], non-negative
|
1647 |
+
``prob[s, t]`` is the probability of state ``s`` being active
|
1648 |
+
conditional on the observation at time ``t``.
|
1649 |
+
Must be non-negative and less than 1.
|
1650 |
+
|
1651 |
+
If ``prob`` is 1-dimensional, it is expanded to shape ``(1, n_steps)``.
|
1652 |
+
|
1653 |
+
If ``prob`` contains multiple input channels, then each channel is decoded independently.
|
1654 |
+
|
1655 |
+
transition : np.ndarray [shape=(2, 2) or (n_states, 2, 2)], non-negative
|
1656 |
+
If 2-dimensional, the same transition matrix is applied to each sub-problem.
|
1657 |
+
``transition[0, i]`` is the probability of the state going from inactive to ``i``,
|
1658 |
+
``transition[1, i]`` is the probability of the state going from active to ``i``.
|
1659 |
+
Each row must sum to 1.
|
1660 |
+
|
1661 |
+
If 3-dimensional, ``transition[s]`` is interpreted as the 2x2 transition matrix
|
1662 |
+
for state label ``s``.
|
1663 |
+
|
1664 |
+
p_state : np.ndarray [shape=(n_states,)]
|
1665 |
+
Optional: marginal probability for each state (between [0,1]).
|
1666 |
+
If not provided, a uniform distribution (0.5 for each state)
|
1667 |
+
is assumed.
|
1668 |
+
|
1669 |
+
p_init : np.ndarray [shape=(n_states,)]
|
1670 |
+
Optional: initial state distribution.
|
1671 |
+
If not provided, it is assumed to be uniform.
|
1672 |
+
|
1673 |
+
return_logp : bool
|
1674 |
+
If ``True``, return the (unnormalized) log-likelihood of the state sequences.
|
1675 |
+
|
1676 |
+
Returns
|
1677 |
+
-------
|
1678 |
+
Either ``states`` or ``(states, logp)``:
|
1679 |
+
states : np.ndarray [shape=(..., n_states, n_steps)]
|
1680 |
+
The most likely state sequence.
|
1681 |
+
logp : np.ndarray [shape=(..., n_states,)]
|
1682 |
+
If ``return_logp=True``, the (unnormalized) log probability of each
|
1683 |
+
state activation sequence ``states``
|
1684 |
+
|
1685 |
+
See Also
|
1686 |
+
--------
|
1687 |
+
viterbi :
|
1688 |
+
Viterbi decoding from observation likelihoods
|
1689 |
+
viterbi_discriminative :
|
1690 |
+
Viterbi decoding for discriminative (mutually exclusive) state predictions
|
1691 |
+
|
1692 |
+
Examples
|
1693 |
+
--------
|
1694 |
+
In this example, we have a sequence of binary state likelihoods that we want to de-noise
|
1695 |
+
under the assumption that state changes are relatively uncommon. Positive predictions
|
1696 |
+
should only be retained if they persist for multiple steps, and any transient predictions
|
1697 |
+
should be considered as errors. This use case arises frequently in problems such as
|
1698 |
+
instrument recognition, where state activations tend to be stable over time, but subject
|
1699 |
+
to abrupt changes (e.g., when an instrument joins the mix).
|
1700 |
+
|
1701 |
+
We assume that the 0 state has a self-transition probability of 90%, and the 1 state
|
1702 |
+
has a self-transition probability of 70%. We assume the marginal and initial
|
1703 |
+
probability of either state is 50%.
|
1704 |
+
|
1705 |
+
>>> trans = np.array([[0.9, 0.1], [0.3, 0.7]])
|
1706 |
+
>>> prob = np.array([0.1, 0.7, 0.4, 0.3, 0.8, 0.9, 0.8, 0.2, 0.6, 0.3])
|
1707 |
+
>>> librosa.sequence.viterbi_binary(prob, trans, p_state=0.5, p_init=0.5)
|
1708 |
+
array([[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]])
|
1709 |
+
"""
|
1710 |
+
|
1711 |
+
prob = np.atleast_2d(prob)
|
1712 |
+
|
1713 |
+
n_states, n_steps = prob.shape[-2:]
|
1714 |
+
|
1715 |
+
if transition.shape == (2, 2):
|
1716 |
+
transition = np.tile(transition, (n_states, 1, 1))
|
1717 |
+
elif transition.shape != (n_states, 2, 2):
|
1718 |
+
raise ParameterError(
|
1719 |
+
f"transition.shape={transition.shape}, must be (2, 2) or "
|
1720 |
+
f"(n_states, 2, 2)={n_states}"
|
1721 |
+
)
|
1722 |
+
|
1723 |
+
if np.any(transition < 0) or not np.allclose(transition.sum(axis=-1), 1):
|
1724 |
+
raise ParameterError(
|
1725 |
+
"Invalid transition matrix: must be non-negative "
|
1726 |
+
"and sum to 1 on each row."
|
1727 |
+
)
|
1728 |
+
|
1729 |
+
if np.any(prob < 0) or np.any(prob > 1):
|
1730 |
+
raise ParameterError("Invalid probability values: prob must be between [0, 1]")
|
1731 |
+
|
1732 |
+
if p_state is None:
|
1733 |
+
p_state = np.empty(n_states)
|
1734 |
+
p_state.fill(0.5)
|
1735 |
+
else:
|
1736 |
+
p_state = np.atleast_1d(p_state)
|
1737 |
+
|
1738 |
+
assert p_state is not None
|
1739 |
+
|
1740 |
+
if p_state.shape != (n_states,) or np.any(p_state < 0) or np.any(p_state > 1):
|
1741 |
+
raise ParameterError(f"Invalid marginal state distributions: p_state={p_state}")
|
1742 |
+
|
1743 |
+
if p_init is None:
|
1744 |
+
p_init = np.empty(n_states)
|
1745 |
+
p_init.fill(0.5)
|
1746 |
+
else:
|
1747 |
+
p_init = np.atleast_1d(p_init)
|
1748 |
+
|
1749 |
+
assert p_init is not None
|
1750 |
+
|
1751 |
+
if p_init.shape != (n_states,) or np.any(p_init < 0) or np.any(p_init > 1):
|
1752 |
+
raise ParameterError(f"Invalid initial state distributions: p_init={p_init}")
|
1753 |
+
|
1754 |
+
shape_prefix = list(prob.shape[:-2])
|
1755 |
+
states = np.empty(shape_prefix + [n_states, n_steps], dtype=np.uint16)
|
1756 |
+
logp = np.empty(shape_prefix + [n_states])
|
1757 |
+
|
1758 |
+
prob_binary = np.empty(shape_prefix + [2, n_steps])
|
1759 |
+
p_state_binary = np.empty(2)
|
1760 |
+
p_init_binary = np.empty(2)
|
1761 |
+
|
1762 |
+
for state in range(n_states):
|
1763 |
+
prob_binary[..., 0, :] = 1 - prob[..., state, :]
|
1764 |
+
prob_binary[..., 1, :] = prob[..., state, :]
|
1765 |
+
|
1766 |
+
p_state_binary[0] = 1 - p_state[state]
|
1767 |
+
p_state_binary[1] = p_state[state]
|
1768 |
+
|
1769 |
+
p_init_binary[0] = 1 - p_init[state]
|
1770 |
+
p_init_binary[1] = p_init[state]
|
1771 |
+
|
1772 |
+
states[..., state, :], logp[..., state] = viterbi_discriminative(
|
1773 |
+
prob_binary,
|
1774 |
+
transition[state],
|
1775 |
+
p_state=p_state_binary,
|
1776 |
+
p_init=p_init_binary,
|
1777 |
+
return_logp=True,
|
1778 |
+
)
|
1779 |
+
|
1780 |
+
if return_logp:
|
1781 |
+
return states, logp
|
1782 |
+
|
1783 |
+
return states
|
1784 |
+
|
1785 |
+
|
1786 |
+
def transition_uniform(n_states: int) -> np.ndarray:
|
1787 |
+
"""Construct a uniform transition matrix over ``n_states``.
|
1788 |
+
|
1789 |
+
Parameters
|
1790 |
+
----------
|
1791 |
+
n_states : int > 0
|
1792 |
+
The number of states
|
1793 |
+
|
1794 |
+
Returns
|
1795 |
+
-------
|
1796 |
+
transition : np.ndarray [shape=(n_states, n_states)]
|
1797 |
+
``transition[i, j] = 1./n_states``
|
1798 |
+
|
1799 |
+
Examples
|
1800 |
+
--------
|
1801 |
+
>>> librosa.sequence.transition_uniform(3)
|
1802 |
+
array([[0.333, 0.333, 0.333],
|
1803 |
+
[0.333, 0.333, 0.333],
|
1804 |
+
[0.333, 0.333, 0.333]])
|
1805 |
+
"""
|
1806 |
+
|
1807 |
+
if not is_positive_int(n_states):
|
1808 |
+
raise ParameterError(f"n_states={n_states} must be a positive integer")
|
1809 |
+
|
1810 |
+
transition = np.empty((n_states, n_states), dtype=np.float64)
|
1811 |
+
transition.fill(1.0 / n_states)
|
1812 |
+
return transition
|
1813 |
+
|
1814 |
+
|
1815 |
+
def transition_loop(n_states: int, prob: Union[float, Iterable[float]]) -> np.ndarray:
|
1816 |
+
"""Construct a self-loop transition matrix over ``n_states``.
|
1817 |
+
|
1818 |
+
The transition matrix will have the following properties:
|
1819 |
+
|
1820 |
+
- ``transition[i, i] = p`` for all ``i``
|
1821 |
+
- ``transition[i, j] = (1 - p) / (n_states - 1)`` for all ``j != i``
|
1822 |
+
|
1823 |
+
This type of transition matrix is appropriate when states tend to be
|
1824 |
+
locally stable, and there is no additional structure between different
|
1825 |
+
states. This is primarily useful for de-noising frame-wise predictions.
|
1826 |
+
|
1827 |
+
Parameters
|
1828 |
+
----------
|
1829 |
+
n_states : int > 1
|
1830 |
+
The number of states
|
1831 |
+
|
1832 |
+
prob : float in [0, 1] or iterable, length=n_states
|
1833 |
+
If a scalar, this is the probability of a self-transition.
|
1834 |
+
|
1835 |
+
If a vector of length ``n_states``, ``p[i]`` is the probability of self-transition in state ``i``
|
1836 |
+
|
1837 |
+
Returns
|
1838 |
+
-------
|
1839 |
+
transition : np.ndarray [shape=(n_states, n_states)]
|
1840 |
+
The transition matrix
|
1841 |
+
|
1842 |
+
Examples
|
1843 |
+
--------
|
1844 |
+
>>> librosa.sequence.transition_loop(3, 0.5)
|
1845 |
+
array([[0.5 , 0.25, 0.25],
|
1846 |
+
[0.25, 0.5 , 0.25],
|
1847 |
+
[0.25, 0.25, 0.5 ]])
|
1848 |
+
|
1849 |
+
>>> librosa.sequence.transition_loop(3, [0.8, 0.5, 0.25])
|
1850 |
+
array([[0.8 , 0.1 , 0.1 ],
|
1851 |
+
[0.25 , 0.5 , 0.25 ],
|
1852 |
+
[0.375, 0.375, 0.25 ]])
|
1853 |
+
"""
|
1854 |
+
|
1855 |
+
if not (is_positive_int(n_states) and (n_states > 1)):
|
1856 |
+
raise ParameterError(f"n_states={n_states} must be a positive integer > 1")
|
1857 |
+
|
1858 |
+
transition = np.empty((n_states, n_states), dtype=np.float64)
|
1859 |
+
|
1860 |
+
# if it's a float, make it a vector
|
1861 |
+
prob = np.asarray(prob, dtype=np.float64)
|
1862 |
+
|
1863 |
+
if prob.ndim == 0:
|
1864 |
+
prob = np.tile(prob, n_states)
|
1865 |
+
|
1866 |
+
if prob.shape != (n_states,):
|
1867 |
+
raise ParameterError(
|
1868 |
+
f"prob={prob} must have length equal to n_states={n_states}"
|
1869 |
+
)
|
1870 |
+
|
1871 |
+
if np.any(prob < 0) or np.any(prob > 1):
|
1872 |
+
raise ParameterError(f"prob={prob} must have values in the range [0, 1]")
|
1873 |
+
|
1874 |
+
for i, prob_i in enumerate(prob):
|
1875 |
+
transition[i] = (1.0 - prob_i) / (n_states - 1)
|
1876 |
+
transition[i, i] = prob_i
|
1877 |
+
|
1878 |
+
return transition
|
1879 |
+
|
1880 |
+
|
1881 |
+
def transition_cycle(n_states: int, prob: Union[float, Iterable[float]]) -> np.ndarray:
|
1882 |
+
"""Construct a cyclic transition matrix over ``n_states``.
|
1883 |
+
|
1884 |
+
The transition matrix will have the following properties:
|
1885 |
+
|
1886 |
+
- ``transition[i, i] = p``
|
1887 |
+
- ``transition[i, i + 1] = (1 - p)``
|
1888 |
+
|
1889 |
+
This type of transition matrix is appropriate for state spaces
|
1890 |
+
with cyclical structure, such as metrical position within a bar.
|
1891 |
+
For example, a song in 4/4 time has state transitions of the form
|
1892 |
+
|
1893 |
+
1->{1, 2}, 2->{2, 3}, 3->{3, 4}, 4->{4, 1}.
|
1894 |
+
|
1895 |
+
Parameters
|
1896 |
+
----------
|
1897 |
+
n_states : int > 1
|
1898 |
+
The number of states
|
1899 |
+
|
1900 |
+
prob : float in [0, 1] or iterable, length=n_states
|
1901 |
+
If a scalar, this is the probability of a self-transition.
|
1902 |
+
|
1903 |
+
If a vector of length ``n_states``, ``p[i]`` is the probability of
|
1904 |
+
self-transition in state ``i``
|
1905 |
+
|
1906 |
+
Returns
|
1907 |
+
-------
|
1908 |
+
transition : np.ndarray [shape=(n_states, n_states)]
|
1909 |
+
The transition matrix
|
1910 |
+
|
1911 |
+
Examples
|
1912 |
+
--------
|
1913 |
+
>>> librosa.sequence.transition_cycle(4, 0.9)
|
1914 |
+
array([[0.9, 0.1, 0. , 0. ],
|
1915 |
+
[0. , 0.9, 0.1, 0. ],
|
1916 |
+
[0. , 0. , 0.9, 0.1],
|
1917 |
+
[0.1, 0. , 0. , 0.9]])
|
1918 |
+
"""
|
1919 |
+
|
1920 |
+
if not (is_positive_int(n_states) and n_states > 1):
|
1921 |
+
raise ParameterError(f"n_states={n_states} must be a positive integer > 1")
|
1922 |
+
|
1923 |
+
transition = np.zeros((n_states, n_states), dtype=np.float64)
|
1924 |
+
|
1925 |
+
# if it's a float, make it a vector
|
1926 |
+
prob = np.asarray(prob, dtype=np.float64)
|
1927 |
+
|
1928 |
+
if prob.ndim == 0:
|
1929 |
+
prob = np.tile(prob, n_states)
|
1930 |
+
|
1931 |
+
if prob.shape != (n_states,):
|
1932 |
+
raise ParameterError(
|
1933 |
+
f"prob={prob} must have length equal to n_states={n_states}"
|
1934 |
+
)
|
1935 |
+
|
1936 |
+
if np.any(prob < 0) or np.any(prob > 1):
|
1937 |
+
raise ParameterError(f"prob={prob} must have values in the range [0, 1]")
|
1938 |
+
|
1939 |
+
for i, prob_i in enumerate(prob):
|
1940 |
+
transition[i, np.mod(i + 1, n_states)] = 1.0 - prob_i
|
1941 |
+
transition[i, i] = prob_i
|
1942 |
+
|
1943 |
+
return transition
|
1944 |
+
|
1945 |
+
|
1946 |
+
def transition_local(
|
1947 |
+
n_states: int,
|
1948 |
+
width: Union[int, Iterable[int]],
|
1949 |
+
*,
|
1950 |
+
window: _WindowSpec = "triangle",
|
1951 |
+
wrap: bool = False,
|
1952 |
+
) -> np.ndarray:
|
1953 |
+
"""Construct a localized transition matrix.
|
1954 |
+
|
1955 |
+
The transition matrix will have the following properties:
|
1956 |
+
|
1957 |
+
- ``transition[i, j] = 0`` if ``|i - j| > width``
|
1958 |
+
- ``transition[i, i]`` is maximal
|
1959 |
+
- ``transition[i, i - width//2 : i + width//2]`` has shape ``window``
|
1960 |
+
|
1961 |
+
This type of transition matrix is appropriate for state spaces
|
1962 |
+
that discretely approximate continuous variables, such as in fundamental
|
1963 |
+
frequency estimation.
|
1964 |
+
|
1965 |
+
Parameters
|
1966 |
+
----------
|
1967 |
+
n_states : int > 1
|
1968 |
+
The number of states
|
1969 |
+
|
1970 |
+
width : int >= 1 or iterable
|
1971 |
+
The maximum number of states to treat as "local".
|
1972 |
+
If iterable, it should have length equal to ``n_states``,
|
1973 |
+
and specify the width independently for each state.
|
1974 |
+
|
1975 |
+
window : str, callable, or window specification
|
1976 |
+
The window function to determine the shape of the "local" distribution.
|
1977 |
+
|
1978 |
+
Any window specification supported by `filters.get_window` will work here.
|
1979 |
+
|
1980 |
+
.. note:: Certain windows (e.g., 'hann') are identically 0 at the boundaries,
|
1981 |
+
so and effectively have ``width-2`` non-zero values. You may have to expand
|
1982 |
+
``width`` to get the desired behavior.
|
1983 |
+
|
1984 |
+
wrap : bool
|
1985 |
+
If ``True``, then state locality ``|i - j|`` is computed modulo ``n_states``.
|
1986 |
+
If ``False`` (default), then locality is absolute.
|
1987 |
+
|
1988 |
+
See Also
|
1989 |
+
--------
|
1990 |
+
librosa.filters.get_window
|
1991 |
+
|
1992 |
+
Returns
|
1993 |
+
-------
|
1994 |
+
transition : np.ndarray [shape=(n_states, n_states)]
|
1995 |
+
The transition matrix
|
1996 |
+
|
1997 |
+
Examples
|
1998 |
+
--------
|
1999 |
+
Triangular distributions with and without wrapping
|
2000 |
+
|
2001 |
+
>>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=False)
|
2002 |
+
array([[0.667, 0.333, 0. , 0. , 0. ],
|
2003 |
+
[0.25 , 0.5 , 0.25 , 0. , 0. ],
|
2004 |
+
[0. , 0.25 , 0.5 , 0.25 , 0. ],
|
2005 |
+
[0. , 0. , 0.25 , 0.5 , 0.25 ],
|
2006 |
+
[0. , 0. , 0. , 0.333, 0.667]])
|
2007 |
+
|
2008 |
+
>>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=True)
|
2009 |
+
array([[0.5 , 0.25, 0. , 0. , 0.25],
|
2010 |
+
[0.25, 0.5 , 0.25, 0. , 0. ],
|
2011 |
+
[0. , 0.25, 0.5 , 0.25, 0. ],
|
2012 |
+
[0. , 0. , 0.25, 0.5 , 0.25],
|
2013 |
+
[0.25, 0. , 0. , 0.25, 0.5 ]])
|
2014 |
+
|
2015 |
+
Uniform local distributions with variable widths and no wrapping
|
2016 |
+
|
2017 |
+
>>> librosa.sequence.transition_local(5, [1, 2, 3, 3, 1], window='ones', wrap=False)
|
2018 |
+
array([[1. , 0. , 0. , 0. , 0. ],
|
2019 |
+
[0.5 , 0.5 , 0. , 0. , 0. ],
|
2020 |
+
[0. , 0.333, 0.333, 0.333, 0. ],
|
2021 |
+
[0. , 0. , 0.333, 0.333, 0.333],
|
2022 |
+
[0. , 0. , 0. , 0. , 1. ]])
|
2023 |
+
"""
|
2024 |
+
|
2025 |
+
if not (is_positive_int(n_states) and n_states > 1):
|
2026 |
+
raise ParameterError(f"n_states={n_states} must be a positive integer > 1")
|
2027 |
+
|
2028 |
+
width = np.asarray(width, dtype=int)
|
2029 |
+
if width.ndim == 0:
|
2030 |
+
width = np.tile(width, n_states)
|
2031 |
+
|
2032 |
+
if width.shape != (n_states,):
|
2033 |
+
raise ParameterError(
|
2034 |
+
f"width={width} must have length equal to n_states={n_states}"
|
2035 |
+
)
|
2036 |
+
|
2037 |
+
if np.any(width < 1):
|
2038 |
+
raise ParameterError(f"width={width} must be at least 1")
|
2039 |
+
|
2040 |
+
transition = np.zeros((n_states, n_states), dtype=np.float64)
|
2041 |
+
|
2042 |
+
# Fill in the widths. This is inefficient, but simple
|
2043 |
+
for i, width_i in enumerate(width):
|
2044 |
+
trans_row = pad_center(
|
2045 |
+
get_window(window, width_i, fftbins=False), size=n_states
|
2046 |
+
)
|
2047 |
+
trans_row = np.roll(trans_row, n_states // 2 + i + 1)
|
2048 |
+
|
2049 |
+
if not wrap:
|
2050 |
+
# Knock out the off-diagonal-band elements
|
2051 |
+
trans_row[min(n_states, i + width_i // 2 + 1) :] = 0
|
2052 |
+
trans_row[: max(0, i - width_i // 2)] = 0
|
2053 |
+
|
2054 |
+
transition[i] = trans_row
|
2055 |
+
|
2056 |
+
# Row-normalize
|
2057 |
+
transition /= transition.sum(axis=1, keepdims=True)
|
2058 |
+
|
2059 |
+
return transition
|
utils.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""Feature manipulation utilities"""
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import scipy.signal
|
7 |
+
from numba import jit
|
8 |
+
|
9 |
+
from .._cache import cache
|
10 |
+
from ..util.exceptions import ParameterError
|
11 |
+
from typing import Any
|
12 |
+
|
13 |
+
__all__ = ["delta", "stack_memory"]
|
14 |
+
|
15 |
+
|
16 |
+
@cache(level=40)
|
17 |
+
def delta(
|
18 |
+
data: np.ndarray,
|
19 |
+
*,
|
20 |
+
width: int = 9,
|
21 |
+
order: int = 1,
|
22 |
+
axis: int = -1,
|
23 |
+
mode: str = "interp",
|
24 |
+
**kwargs: Any,
|
25 |
+
) -> np.ndarray:
|
26 |
+
r"""Compute delta features: local estimate of the derivative
|
27 |
+
of the input data along the selected axis.
|
28 |
+
|
29 |
+
Delta features are computed Savitsky-Golay filtering.
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
----------
|
33 |
+
data : np.ndarray
|
34 |
+
the input data matrix (eg, spectrogram)
|
35 |
+
|
36 |
+
width : int, positive, odd [scalar]
|
37 |
+
Number of frames over which to compute the delta features.
|
38 |
+
Cannot exceed the length of ``data`` along the specified axis.
|
39 |
+
|
40 |
+
If ``mode='interp'``, then ``width`` must be at least ``data.shape[axis]``.
|
41 |
+
|
42 |
+
order : int > 0 [scalar]
|
43 |
+
the order of the difference operator.
|
44 |
+
1 for first derivative, 2 for second, etc.
|
45 |
+
|
46 |
+
axis : int [scalar]
|
47 |
+
the axis along which to compute deltas.
|
48 |
+
Default is -1 (columns).
|
49 |
+
|
50 |
+
mode : str, {'interp', 'nearest', 'mirror', 'constant', 'wrap'}
|
51 |
+
Padding mode for estimating differences at the boundaries.
|
52 |
+
|
53 |
+
**kwargs : additional keyword arguments
|
54 |
+
See `scipy.signal.savgol_filter`
|
55 |
+
|
56 |
+
Returns
|
57 |
+
-------
|
58 |
+
delta_data : np.ndarray [shape=(..., t)]
|
59 |
+
delta matrix of ``data`` at specified order
|
60 |
+
|
61 |
+
Notes
|
62 |
+
-----
|
63 |
+
This function caches at level 40.
|
64 |
+
|
65 |
+
See Also
|
66 |
+
--------
|
67 |
+
scipy.signal.savgol_filter
|
68 |
+
|
69 |
+
Examples
|
70 |
+
--------
|
71 |
+
Compute MFCC deltas, delta-deltas
|
72 |
+
|
73 |
+
>>> y, sr = librosa.load(librosa.ex('libri1'), duration=5)
|
74 |
+
>>> mfcc = librosa.feature.mfcc(y=y, sr=sr)
|
75 |
+
>>> mfcc_delta = librosa.feature.delta(mfcc)
|
76 |
+
>>> mfcc_delta
|
77 |
+
array([[-5.713e+02, -5.697e+02, ..., -1.522e+02, -1.224e+02],
|
78 |
+
[ 1.104e+01, 1.330e+01, ..., 2.089e+02, 1.698e+02],
|
79 |
+
...,
|
80 |
+
[ 2.829e+00, 1.933e+00, ..., -3.149e+00, 2.294e-01],
|
81 |
+
[ 2.890e+00, 2.187e+00, ..., 6.959e+00, -1.039e+00]],
|
82 |
+
dtype=float32)
|
83 |
+
|
84 |
+
>>> mfcc_delta2 = librosa.feature.delta(mfcc, order=2)
|
85 |
+
>>> mfcc_delta2
|
86 |
+
array([[-1.195, -1.195, ..., -4.328, -4.328],
|
87 |
+
[-1.566, -1.566, ..., -9.949, -9.949],
|
88 |
+
...,
|
89 |
+
[ 0.707, 0.707, ..., 2.287, 2.287],
|
90 |
+
[ 0.655, 0.655, ..., -1.719, -1.719]], dtype=float32)
|
91 |
+
|
92 |
+
>>> import matplotlib.pyplot as plt
|
93 |
+
>>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
|
94 |
+
>>> img1 = librosa.display.specshow(mfcc, ax=ax[0], x_axis='time')
|
95 |
+
>>> ax[0].set(title='MFCC')
|
96 |
+
>>> ax[0].label_outer()
|
97 |
+
>>> img2 = librosa.display.specshow(mfcc_delta, ax=ax[1], x_axis='time')
|
98 |
+
>>> ax[1].set(title=r'MFCC-$\Delta$')
|
99 |
+
>>> ax[1].label_outer()
|
100 |
+
>>> img3 = librosa.display.specshow(mfcc_delta2, ax=ax[2], x_axis='time')
|
101 |
+
>>> ax[2].set(title=r'MFCC-$\Delta^2$')
|
102 |
+
>>> fig.colorbar(img1, ax=[ax[0]])
|
103 |
+
>>> fig.colorbar(img2, ax=[ax[1]])
|
104 |
+
>>> fig.colorbar(img3, ax=[ax[2]])
|
105 |
+
"""
|
106 |
+
|
107 |
+
data = np.atleast_1d(data)
|
108 |
+
|
109 |
+
if mode == "interp" and width > data.shape[axis]:
|
110 |
+
raise ParameterError(
|
111 |
+
f"when mode='interp', width={width} "
|
112 |
+
f"cannot exceed data.shape[axis]={data.shape[axis]}"
|
113 |
+
)
|
114 |
+
|
115 |
+
if width < 3 or np.mod(width, 2) != 1:
|
116 |
+
raise ParameterError("width must be an odd integer >= 3")
|
117 |
+
|
118 |
+
if order <= 0 or not isinstance(order, (int, np.integer)):
|
119 |
+
raise ParameterError("order must be a positive integer")
|
120 |
+
|
121 |
+
kwargs.pop("deriv", None)
|
122 |
+
kwargs.setdefault("polyorder", order)
|
123 |
+
result: np.ndarray = scipy.signal.savgol_filter(
|
124 |
+
data, width, deriv=order, axis=axis, mode=mode, **kwargs
|
125 |
+
)
|
126 |
+
return result
|
127 |
+
|
128 |
+
|
129 |
+
@cache(level=40)
|
130 |
+
def stack_memory(
|
131 |
+
data: np.ndarray, *, n_steps: int = 2, delay: int = 1, **kwargs: Any
|
132 |
+
) -> np.ndarray:
|
133 |
+
"""Short-term history embedding: vertically concatenate a data
|
134 |
+
vector or matrix with delayed copies of itself.
|
135 |
+
|
136 |
+
Each column ``data[:, i]`` is mapped to::
|
137 |
+
|
138 |
+
data[..., i] -> [data[..., i],
|
139 |
+
data[..., i - delay],
|
140 |
+
...
|
141 |
+
data[..., i - (n_steps-1)*delay]]
|
142 |
+
|
143 |
+
For columns ``i < (n_steps - 1) * delay``, the data will be padded.
|
144 |
+
By default, the data is padded with zeros, but this behavior can be
|
145 |
+
overridden by supplying additional keyword arguments which are passed
|
146 |
+
to `np.pad()`.
|
147 |
+
|
148 |
+
Parameters
|
149 |
+
----------
|
150 |
+
data : np.ndarray [shape=(..., d, t)]
|
151 |
+
Input data matrix. If ``data`` is a vector (``data.ndim == 1``),
|
152 |
+
it will be interpreted as a row matrix and reshaped to ``(1, t)``.
|
153 |
+
|
154 |
+
n_steps : int > 0 [scalar]
|
155 |
+
embedding dimension, the number of steps back in time to stack
|
156 |
+
|
157 |
+
delay : int != 0 [scalar]
|
158 |
+
the number of columns to step.
|
159 |
+
|
160 |
+
Positive values embed from the past (previous columns).
|
161 |
+
|
162 |
+
Negative values embed from the future (subsequent columns).
|
163 |
+
|
164 |
+
**kwargs : additional keyword arguments
|
165 |
+
Additional arguments to pass to `numpy.pad`
|
166 |
+
|
167 |
+
Returns
|
168 |
+
-------
|
169 |
+
data_history : np.ndarray [shape=(..., m * d, t)]
|
170 |
+
data augmented with lagged copies of itself,
|
171 |
+
where ``m == n_steps - 1``.
|
172 |
+
|
173 |
+
Notes
|
174 |
+
-----
|
175 |
+
This function caches at level 40.
|
176 |
+
|
177 |
+
Examples
|
178 |
+
--------
|
179 |
+
Keep two steps (current and previous)
|
180 |
+
|
181 |
+
>>> data = np.arange(-3, 3)
|
182 |
+
>>> librosa.feature.stack_memory(data)
|
183 |
+
array([[-3, -2, -1, 0, 1, 2],
|
184 |
+
[ 0, -3, -2, -1, 0, 1]])
|
185 |
+
|
186 |
+
Or three steps
|
187 |
+
|
188 |
+
>>> librosa.feature.stack_memory(data, n_steps=3)
|
189 |
+
array([[-3, -2, -1, 0, 1, 2],
|
190 |
+
[ 0, -3, -2, -1, 0, 1],
|
191 |
+
[ 0, 0, -3, -2, -1, 0]])
|
192 |
+
|
193 |
+
Use reflection padding instead of zero-padding
|
194 |
+
|
195 |
+
>>> librosa.feature.stack_memory(data, n_steps=3, mode='reflect')
|
196 |
+
array([[-3, -2, -1, 0, 1, 2],
|
197 |
+
[-2, -3, -2, -1, 0, 1],
|
198 |
+
[-1, -2, -3, -2, -1, 0]])
|
199 |
+
|
200 |
+
Or pad with edge-values, and delay by 2
|
201 |
+
|
202 |
+
>>> librosa.feature.stack_memory(data, n_steps=3, delay=2, mode='edge')
|
203 |
+
array([[-3, -2, -1, 0, 1, 2],
|
204 |
+
[-3, -3, -3, -2, -1, 0],
|
205 |
+
[-3, -3, -3, -3, -3, -2]])
|
206 |
+
|
207 |
+
Stack time-lagged beat-synchronous chroma edge padding
|
208 |
+
|
209 |
+
>>> y, sr = librosa.load(librosa.ex('sweetwaltz'), duration=10)
|
210 |
+
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
|
211 |
+
>>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512)
|
212 |
+
>>> beats = librosa.util.fix_frames(beats, x_min=0)
|
213 |
+
>>> chroma_sync = librosa.util.sync(chroma, beats)
|
214 |
+
>>> chroma_lag = librosa.feature.stack_memory(chroma_sync, n_steps=3,
|
215 |
+
... mode='edge')
|
216 |
+
|
217 |
+
Plot the result
|
218 |
+
|
219 |
+
>>> import matplotlib.pyplot as plt
|
220 |
+
>>> fig, ax = plt.subplots()
|
221 |
+
>>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512)
|
222 |
+
>>> librosa.display.specshow(chroma_lag, y_axis='chroma', x_axis='time',
|
223 |
+
... x_coords=beat_times, ax=ax)
|
224 |
+
>>> ax.text(1.0, 1/6, "Lag=0", transform=ax.transAxes, rotation=-90, ha="left", va="center")
|
225 |
+
>>> ax.text(1.0, 3/6, "Lag=1", transform=ax.transAxes, rotation=-90, ha="left", va="center")
|
226 |
+
>>> ax.text(1.0, 5/6, "Lag=2", transform=ax.transAxes, rotation=-90, ha="left", va="center")
|
227 |
+
>>> ax.set(title='Time-lagged chroma', ylabel="")
|
228 |
+
"""
|
229 |
+
|
230 |
+
if n_steps < 1:
|
231 |
+
raise ParameterError("n_steps must be a positive integer")
|
232 |
+
|
233 |
+
if delay == 0:
|
234 |
+
raise ParameterError("delay must be a non-zero integer")
|
235 |
+
|
236 |
+
data = np.atleast_2d(data)
|
237 |
+
t = data.shape[-1]
|
238 |
+
|
239 |
+
if t < 1:
|
240 |
+
raise ParameterError(
|
241 |
+
"Cannot stack memory when input data has "
|
242 |
+
f"no columns. Given data.shape={data.shape}"
|
243 |
+
)
|
244 |
+
kwargs.setdefault("mode", "constant")
|
245 |
+
|
246 |
+
if kwargs["mode"] == "constant":
|
247 |
+
kwargs.setdefault("constant_values", [0])
|
248 |
+
|
249 |
+
padding = [(0, 0) for _ in range(data.ndim)]
|
250 |
+
|
251 |
+
# Pad the end with zeros, which will roll to the front below
|
252 |
+
if delay > 0:
|
253 |
+
padding[-1] = (int((n_steps - 1) * delay), 0)
|
254 |
+
else:
|
255 |
+
padding[-1] = (0, int((n_steps - 1) * -delay))
|
256 |
+
|
257 |
+
data = np.pad(data, padding, **kwargs)
|
258 |
+
|
259 |
+
# Construct the shape of the target array
|
260 |
+
shape = list(data.shape)
|
261 |
+
shape[-2] = shape[-2] * n_steps
|
262 |
+
shape[-1] = t
|
263 |
+
shape = tuple(shape)
|
264 |
+
|
265 |
+
# Construct the output array to match layout and dtype of input
|
266 |
+
history = np.empty_like(data, shape=shape)
|
267 |
+
|
268 |
+
# Populate the output array
|
269 |
+
__stack(history, data, n_steps, delay)
|
270 |
+
|
271 |
+
return history
|
272 |
+
|
273 |
+
|
274 |
+
@jit(nopython=True, cache=False)
|
275 |
+
def __stack(history, data, n_steps, delay):
|
276 |
+
"""Memory-stacking helper function.
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
----------
|
280 |
+
history : output array (2-dimensional)
|
281 |
+
data : pre-padded input array (2-dimensional)
|
282 |
+
n_steps : int > 0, the number of steps to stack
|
283 |
+
delay : int != 0, the amount of delay between steps
|
284 |
+
|
285 |
+
Returns
|
286 |
+
-------
|
287 |
+
None
|
288 |
+
Output is stored directly in the history array
|
289 |
+
"""
|
290 |
+
# Dimension of each copy of the data
|
291 |
+
d = data.shape[-2]
|
292 |
+
|
293 |
+
# Total number of time-steps to output
|
294 |
+
t = history.shape[-1]
|
295 |
+
|
296 |
+
if delay > 0:
|
297 |
+
for step in range(n_steps):
|
298 |
+
q = n_steps - 1 - step
|
299 |
+
# nth block is original shifted left by n*delay steps
|
300 |
+
history[..., step * d : (step + 1) * d, :] = data[
|
301 |
+
..., q * delay : q * delay + t
|
302 |
+
]
|
303 |
+
else:
|
304 |
+
# Handle the last block separately to avoid -t:0 empty slices
|
305 |
+
history[..., -d:, :] = data[..., -t:]
|
306 |
+
|
307 |
+
for step in range(n_steps - 1):
|
308 |
+
# nth block is original shifted right by n*delay steps
|
309 |
+
q = n_steps - 1 - step
|
310 |
+
history[..., step * d : (step + 1) * d, :] = data[
|
311 |
+
..., -t + q * delay : q * delay
|
312 |
+
]
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
|