File size: 50,690 Bytes
4a367ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Filters
=======

Filter bank construction
------------------------
.. autosummary::
    :toctree: generated/

    mel
    chroma
    wavelet
    semitone_filterbank

Window functions
----------------
.. autosummary::
    :toctree: generated/

    window_bandwidth
    get_window

Miscellaneous
-------------
.. autosummary::
    :toctree: generated/

    wavelet_lengths
    cq_to_chroma
    mr_frequencies
    window_sumsquare
    diagonal_filter

Deprecated
----------
.. autosummary::
    :toctree: generated/

    constant_q
    constant_q_lengths

"""
import warnings

import numpy as np
import scipy
import scipy.signal
import scipy.ndimage

from numba import jit

from ._cache import cache
from . import util
from .util.exceptions import ParameterError
from .util.decorators import deprecated

from .core.convert import note_to_hz, hz_to_midi, midi_to_hz, hz_to_octs
from .core.convert import fft_frequencies, mel_frequencies
from numpy.typing import ArrayLike, DTypeLike
from typing import Any, List, Optional, Tuple, Union
from typing_extensions import Literal
from ._typing import _WindowSpec, _FloatLike_co

__all__ = [
    "mel",
    "chroma",
    "constant_q",
    "constant_q_lengths",
    "cq_to_chroma",
    "window_bandwidth",
    "get_window",
    "mr_frequencies",
    "semitone_filterbank",
    "window_sumsquare",
    "diagonal_filter",
    "wavelet",
    "wavelet_lengths",
]

# Dictionary of window function bandwidths

WINDOW_BANDWIDTHS = {
    "bart": 1.3334961334912805,
    "barthann": 1.4560255965133932,
    "bartlett": 1.3334961334912805,
    "bkh": 2.0045975283585014,
    "black": 1.7269681554262326,
    "blackharr": 2.0045975283585014,
    "blackman": 1.7269681554262326,
    "blackmanharris": 2.0045975283585014,
    "blk": 1.7269681554262326,
    "bman": 1.7859588613860062,
    "bmn": 1.7859588613860062,
    "bohman": 1.7859588613860062,
    "box": 1.0,
    "boxcar": 1.0,
    "brt": 1.3334961334912805,
    "brthan": 1.4560255965133932,
    "bth": 1.4560255965133932,
    "cosine": 1.2337005350199792,
    "flat": 2.7762255046484143,
    "flattop": 2.7762255046484143,
    "flt": 2.7762255046484143,
    "halfcosine": 1.2337005350199792,
    "ham": 1.3629455320350348,
    "hamm": 1.3629455320350348,
    "hamming": 1.3629455320350348,
    "han": 1.50018310546875,
    "hann": 1.50018310546875,
    "nut": 1.9763500280946082,
    "nutl": 1.9763500280946082,
    "nuttall": 1.9763500280946082,
    "ones": 1.0,
    "par": 1.9174603174603191,
    "parz": 1.9174603174603191,
    "parzen": 1.9174603174603191,
    "rect": 1.0,
    "rectangular": 1.0,
    "tri": 1.3331706523555851,
    "triang": 1.3331706523555851,
    "triangle": 1.3331706523555851,
}


@cache(level=10)
def mel(
    *,
    sr: float,
    n_fft: int,
    n_mels: int = 128,
    fmin: float = 0.0,
    fmax: Optional[float] = None,
    htk: bool = False,
    norm: Optional[Union[Literal["slaney"], float]] = "slaney",
    dtype: DTypeLike = np.float32,
) -> np.ndarray:
    """Create a Mel filter-bank.

    This produces a linear transformation matrix to project
    FFT bins onto Mel-frequency bins.

    Parameters
    ----------
    sr : number > 0 [scalar]
        sampling rate of the incoming signal

    n_fft : int > 0 [scalar]
        number of FFT components

    n_mels : int > 0 [scalar]
        number of Mel bands to generate

    fmin : float >= 0 [scalar]
        lowest frequency (in Hz)

    fmax : float >= 0 [scalar]
        highest frequency (in Hz).
        If `None`, use ``fmax = sr / 2.0``

    htk : bool [scalar]
        use HTK formula instead of Slaney

    norm : {None, 'slaney', or number} [scalar]
        If 'slaney', divide the triangular mel weights by the width of the mel band
        (area normalization).

        If numeric, use `librosa.util.normalize` to normalize each filter by to unit l_p norm.
        See `librosa.util.normalize` for a full description of supported norm values
        (including `+-np.inf`).

        Otherwise, leave all the triangles aiming for a peak value of 1.0

    dtype : np.dtype
        The data type of the output basis.
        By default, uses 32-bit (single-precision) floating point.

    Returns
    -------
    M : np.ndarray [shape=(n_mels, 1 + n_fft/2)]
        Mel transform matrix

    See Also
    --------
    librosa.util.normalize

    Notes
    -----
    This function caches at level 10.

    Examples
    --------
    >>> melfb = librosa.filters.mel(sr=22050, n_fft=2048)
    >>> melfb
    array([[ 0.   ,  0.016, ...,  0.   ,  0.   ],
           [ 0.   ,  0.   , ...,  0.   ,  0.   ],
           ...,
           [ 0.   ,  0.   , ...,  0.   ,  0.   ],
           [ 0.   ,  0.   , ...,  0.   ,  0.   ]])

    Clip the maximum frequency to 8KHz

    >>> librosa.filters.mel(sr=22050, n_fft=2048, fmax=8000)
    array([[ 0.  ,  0.02, ...,  0.  ,  0.  ],
           [ 0.  ,  0.  , ...,  0.  ,  0.  ],
           ...,
           [ 0.  ,  0.  , ...,  0.  ,  0.  ],
           [ 0.  ,  0.  , ...,  0.  ,  0.  ]])

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> img = librosa.display.specshow(melfb, x_axis='linear', ax=ax)
    >>> ax.set(ylabel='Mel filter', title='Mel filter bank')
    >>> fig.colorbar(img, ax=ax)
    """

    if fmax is None:
        fmax = float(sr) / 2

    # Initialize the weights
    n_mels = int(n_mels)
    weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)

    # Center freqs of each FFT bin
    fftfreqs = fft_frequencies(sr=sr, n_fft=n_fft)

    # 'Center freqs' of mel bands - uniformly spaced between limits
    mel_f = mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax, htk=htk)

    fdiff = np.diff(mel_f)
    ramps = np.subtract.outer(mel_f, fftfreqs)

    for i in range(n_mels):
        # lower and upper slopes for all bins
        lower = -ramps[i] / fdiff[i]
        upper = ramps[i + 2] / fdiff[i + 1]

        # .. then intersect them with each other and zero
        weights[i] = np.maximum(0, np.minimum(lower, upper))

    if isinstance(norm, str):
        if norm == "slaney":
            # Slaney-style mel is scaled to be approx constant energy per channel
            enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
            weights *= enorm[:, np.newaxis]
        else:
            raise ParameterError(f"Unsupported norm={norm}")
    else:
        weights = util.normalize(weights, norm=norm, axis=-1)

    # Only check weights if f_mel[0] is positive
    if not np.all((mel_f[:-2] == 0) | (weights.max(axis=1) > 0)):
        # This means we have an empty channel somewhere
        warnings.warn(
            "Empty filters detected in mel frequency basis. "
            "Some channels will produce empty responses. "
            "Try increasing your sampling rate (and fmax) or "
            "reducing n_mels.",
            stacklevel=2,
        )

    return weights


@cache(level=10)
def chroma(
    *,
    sr: float,
    n_fft: int,
    n_chroma: int = 12,
    tuning: float = 0.0,
    ctroct: float = 5.0,
    octwidth: Union[float, None] = 2,
    norm: Optional[float] = 2,
    base_c: bool = True,
    dtype: DTypeLike = np.float32,
) -> np.ndarray:
    """Create a chroma filter bank.

    This creates a linear transformation matrix to project
    FFT bins onto chroma bins (i.e. pitch classes).

    Parameters
    ----------
    sr : number > 0 [scalar]
        audio sampling rate

    n_fft : int > 0 [scalar]
        number of FFT bins

    n_chroma : int > 0 [scalar]
        number of chroma bins

    tuning : float
        Tuning deviation from A440 in fractions of a chroma bin.

    ctroct : float > 0 [scalar]

    octwidth : float > 0 or None [scalar]
        ``ctroct`` and ``octwidth`` specify a dominance window:
        a Gaussian weighting centered on ``ctroct`` (in octs, A0 = 27.5Hz)
        and with a gaussian half-width of ``octwidth``.

        Set ``octwidth`` to `None` to use a flat weighting.

    norm : float > 0 or np.inf
        Normalization factor for each filter

    base_c : bool
        If True, the filter bank will start at 'C'.
        If False, the filter bank will start at 'A'.

    dtype : np.dtype
        The data type of the output basis.
        By default, uses 32-bit (single-precision) floating point.

    Returns
    -------
    wts : ndarray [shape=(n_chroma, 1 + n_fft / 2)]
        Chroma filter matrix

    See Also
    --------
    librosa.util.normalize
    librosa.feature.chroma_stft

    Notes
    -----
    This function caches at level 10.

    Examples
    --------
    Build a simple chroma filter bank

    >>> chromafb = librosa.filters.chroma(sr=22050, n_fft=4096)
    array([[  1.689e-05,   3.024e-04, ...,   4.639e-17,   5.327e-17],
           [  1.716e-05,   2.652e-04, ...,   2.674e-25,   3.176e-25],
    ...,
           [  1.578e-05,   3.619e-04, ...,   8.577e-06,   9.205e-06],
           [  1.643e-05,   3.355e-04, ...,   1.474e-10,   1.636e-10]])

    Use quarter-tones instead of semitones

    >>> librosa.filters.chroma(sr=22050, n_fft=4096, n_chroma=24)
    array([[  1.194e-05,   2.138e-04, ...,   6.297e-64,   1.115e-63],
           [  1.206e-05,   2.009e-04, ...,   1.546e-79,   2.929e-79],
    ...,
           [  1.162e-05,   2.372e-04, ...,   6.417e-38,   9.923e-38],
           [  1.180e-05,   2.260e-04, ...,   4.697e-50,   7.772e-50]])

    Equally weight all octaves

    >>> librosa.filters.chroma(sr=22050, n_fft=4096, octwidth=None)
    array([[  3.036e-01,   2.604e-01, ...,   2.445e-16,   2.809e-16],
           [  3.084e-01,   2.283e-01, ...,   1.409e-24,   1.675e-24],
    ...,
           [  2.836e-01,   3.116e-01, ...,   4.520e-05,   4.854e-05],
           [  2.953e-01,   2.888e-01, ...,   7.768e-10,   8.629e-10]])

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> img = librosa.display.specshow(chromafb, x_axis='linear', ax=ax)
    >>> ax.set(ylabel='Chroma filter', title='Chroma filter bank')
    >>> fig.colorbar(img, ax=ax)
    """

    wts = np.zeros((n_chroma, n_fft))

    # Get the FFT bins, not counting the DC component
    frequencies = np.linspace(0, sr, n_fft, endpoint=False)[1:]

    frqbins = n_chroma * hz_to_octs(
        frequencies, tuning=tuning, bins_per_octave=n_chroma
    )

    # make up a value for the 0 Hz bin = 1.5 octaves below bin 1
    # (so chroma is 50% rotated from bin 1, and bin width is broad)
    frqbins = np.concatenate(([frqbins[0] - 1.5 * n_chroma], frqbins))

    binwidthbins = np.concatenate((np.maximum(frqbins[1:] - frqbins[:-1], 1.0), [1]))

    D = np.subtract.outer(frqbins, np.arange(0, n_chroma, dtype="d")).T

    n_chroma2 = np.round(float(n_chroma) / 2)

    # Project into range -n_chroma/2 .. n_chroma/2
    # add on fixed offset of 10*n_chroma to ensure all values passed to
    # rem are positive
    D = np.remainder(D + n_chroma2 + 10 * n_chroma, n_chroma) - n_chroma2

    # Gaussian bumps - 2*D to make them narrower
    wts = np.exp(-0.5 * (2 * D / np.tile(binwidthbins, (n_chroma, 1))) ** 2)

    # normalize each column
    wts = util.normalize(wts, norm=norm, axis=0)

    # Maybe apply scaling for fft bins
    if octwidth is not None:
        wts *= np.tile(
            np.exp(-0.5 * (((frqbins / n_chroma - ctroct) / octwidth) ** 2)),
            (n_chroma, 1),
        )

    if base_c:
        wts = np.roll(wts, -3 * (n_chroma // 12), axis=0)

    # remove aliasing columns, copy to ensure row-contiguity
    return np.ascontiguousarray(wts[:, : int(1 + n_fft / 2)], dtype=dtype)


def __float_window(window_spec):
    """Decorator function for windows with fractional input.

    This function guarantees that for fractional ``x``, the following hold:

    1. ``__float_window(window_function)(x)`` has length ``np.ceil(x)``
    2. all values from ``np.floor(x)`` are set to 0.

    For integer-valued ``x``, there should be no change in behavior.
    """

    def _wrap(n, *args, **kwargs):
        """The wrapped window"""
        n_min, n_max = int(np.floor(n)), int(np.ceil(n))

        window = get_window(window_spec, n_min)

        if len(window) < n_max:
            window = np.pad(window, [(0, n_max - len(window))], mode="constant")

        window[n_min:] = 0.0

        return window

    return _wrap


@deprecated(version="0.9.0", version_removed="1.0")
def constant_q(
    *,
    sr: float,
    fmin: Optional[_FloatLike_co] = None,
    n_bins: int = 84,
    bins_per_octave: int = 12,
    window: _WindowSpec = "hann",
    filter_scale: float = 1,
    pad_fft: bool = True,
    norm: Optional[float] = 1,
    dtype: DTypeLike = np.complex64,
    gamma: float = 0,
    **kwargs: Any,
) -> Tuple[np.ndarray, np.ndarray]:
    r"""Construct a constant-Q basis.

    This function constructs a filter bank similar to Morlet wavelets,
    where complex exponentials are windowed to different lengths
    such that the number of cycles remains fixed for all frequencies.

    By default, a Hann window (rather than the Gaussian window of Morlet wavelets)
    is used, but this can be controlled by the ``window`` parameter.

    Frequencies are spaced geometrically, increasing by a factor of
    ``(2**(1./bins_per_octave))`` at each successive band.

    .. warning:: This function is deprecated as of v0.9 and will be removed in 1.0.
        See `librosa.filters.wavelet`.

    Parameters
    ----------
    sr : number > 0 [scalar]
        Audio sampling rate

    fmin : float > 0 [scalar]
        Minimum frequency bin. Defaults to `C1 ~= 32.70`

    n_bins : int > 0 [scalar]
        Number of frequencies.  Defaults to 7 octaves (84 bins).

    bins_per_octave : int > 0 [scalar]
        Number of bins per octave

    window : string, tuple, number, or function
        Windowing function to apply to filters.

    filter_scale : float > 0 [scalar]
        Scale of filter windows.
        Small values (<1) use shorter windows for higher temporal resolution.

    pad_fft : boolean
        Center-pad all filters up to the nearest integral power of 2.

        By default, padding is done with zeros, but this can be overridden
        by setting the ``mode=`` field in *kwargs*.

    norm : {inf, -inf, 0, float > 0}
        Type of norm to use for basis function normalization.
        See librosa.util.normalize

    gamma : number >= 0
        Bandwidth offset for variable-Q transforms.
        ``gamma=0`` produces a constant-Q filterbank.

    dtype : np.dtype
        The data type of the output basis.
        By default, uses 64-bit (single precision) complex floating point.

    **kwargs : additional keyword arguments
        Arguments to `np.pad()` when ``pad==True``.

    Returns
    -------
    filters : np.ndarray, ``len(filters) == n_bins``
        ``filters[i]`` is ``i``\ th time-domain CQT basis filter
    lengths : np.ndarray, ``len(lengths) == n_bins``
        The (fractional) length of each filter

    Notes
    -----
    This function caches at level 10.

    See Also
    --------
    wavelet
    constant_q_lengths
    librosa.cqt
    librosa.vqt
    librosa.util.normalize

    Examples
    --------
    Use a shorter window for each filter

    >>> basis, lengths = librosa.filters.constant_q(sr=22050, filter_scale=0.5)

    Plot one octave of filters in time and frequency

    >>> import matplotlib.pyplot as plt
    >>> basis, lengths = librosa.filters.constant_q(sr=22050)
    >>> fig, ax = plt.subplots(nrows=2, figsize=(10, 6))
    >>> notes = librosa.midi_to_note(np.arange(24, 24 + len(basis)))
    >>> for i, (f, n) in enumerate(zip(basis, notes[:12])):
    ...     f_scale = librosa.util.normalize(f) / 2
    ...     ax[0].plot(i + f_scale.real)
    ...     ax[0].plot(i + f_scale.imag, linestyle=':')
    >>> ax[0].set(yticks=np.arange(len(notes[:12])), yticklabels=notes[:12],
    ...           ylabel='CQ filters',
    ...           title='CQ filters (one octave, time domain)',
    ...           xlabel='Time (samples at 22050 Hz)')
    >>> ax[0].legend(['Real', 'Imaginary'])
    >>> F = np.abs(np.fft.fftn(basis, axes=[-1]))
    >>> # Keep only the positive frequencies
    >>> F = F[:, :(1 + F.shape[1] // 2)]
    >>> librosa.display.specshow(F, x_axis='linear', y_axis='cqt_note', ax=ax[1])
    >>> ax[1].set(ylabel='CQ filters', title='CQ filter magnitudes (frequency domain)')
    """

    if fmin is None:
        fmin = note_to_hz("C1")

    # Pass-through parameters to get the filter lengths
    lengths = constant_q_lengths(
        sr=sr,
        fmin=fmin,
        n_bins=n_bins,
        bins_per_octave=bins_per_octave,
        window=window,
        filter_scale=filter_scale,
        gamma=gamma,
    )

    freqs = fmin * (2.0 ** (np.arange(n_bins, dtype=float) / bins_per_octave))

    # Build the filters
    filters = []
    for ilen, freq in zip(lengths, freqs):
        # Build the filter: note, length will be ceil(ilen)
        sig = util.phasor(
            np.arange(-ilen // 2, ilen // 2, dtype=float) * 2 * np.pi * freq / sr
        )

        # Apply the windowing function
        sig = sig * __float_window(window)(len(sig))

        # Normalize
        sig = util.normalize(sig, norm=norm)

        filters.append(sig)

    # Pad and stack
    max_len = max(lengths)
    if pad_fft:
        max_len = int(2.0 ** (np.ceil(np.log2(max_len))))
    else:
        max_len = int(np.ceil(max_len))

    filters = np.asarray(
        [util.pad_center(filt, size=max_len, **kwargs) for filt in filters], dtype=dtype
    )

    return filters, np.asarray(lengths)


@deprecated(version="0.9.0", version_removed="1.0")
@cache(level=10)
def constant_q_lengths(
    *,
    sr: float,
    fmin: _FloatLike_co,
    n_bins: int = 84,
    bins_per_octave: int = 12,
    window: _WindowSpec = "hann",
    filter_scale: float = 1,
    gamma: float = 0,
) -> np.ndarray:
    r"""Return length of each filter in a constant-Q basis.

    .. warning:: This function is deprecated as of v0.9 and will be removed in 1.0.
        See `librosa.filters.wavelet_lengths`.

    Parameters
    ----------
    sr : number > 0 [scalar]
        Audio sampling rate
    fmin : float > 0 [scalar]
        Minimum frequency bin.
    n_bins : int > 0 [scalar]
        Number of frequencies.  Defaults to 7 octaves (84 bins).
    bins_per_octave : int > 0 [scalar]
        Number of bins per octave
    window : str or callable
        Window function to use on filters
    filter_scale : float > 0 [scalar]
        Resolution of filter windows. Larger values use longer windows.
    gamma : number >= 0
        Bandwidth offset for variable-Q transforms.
        ``gamma=0`` produces a constant-Q filterbank.

    Returns
    -------
    lengths : np.ndarray
        The length of each filter.

    Notes
    -----
    This function caches at level 10.

    See Also
    --------
    wavelet_lengths
    """

    if fmin <= 0:
        raise ParameterError("fmin must be strictly positive")

    if bins_per_octave <= 0:
        raise ParameterError("bins_per_octave must be positive")

    if filter_scale <= 0:
        raise ParameterError("filter_scale must be positive")

    if n_bins <= 0 or not isinstance(n_bins, (int, np.integer)):
        raise ParameterError("n_bins must be a positive integer")

    # Compute the frequencies
    freq = fmin * (2.0 ** (np.arange(n_bins, dtype=float) / bins_per_octave))

    # Q should be capitalized here, so we suppress the name warning
    # pylint: disable=invalid-name
    #
    # Balance filter bandwidths
    alpha = (2.0 ** (2 / bins_per_octave) - 1) / (2.0 ** (2 / bins_per_octave) + 1)
    Q = float(filter_scale) / alpha

    if max(freq * (1 + 0.5 * window_bandwidth(window) / Q)) > sr / 2.0:
        raise ParameterError(
            f"Maximum filter frequency={max(freq):.2f} would exceed Nyquist={sr/2}"
        )

    # Convert frequencies to filter lengths
    lengths: np.ndarray = Q * sr / (freq + gamma / alpha)

    return lengths


@cache(level=10)
def wavelet_lengths(
    *,
    freqs: ArrayLike,
    sr: float = 22050,
    window: _WindowSpec = "hann",
    filter_scale: float = 1,
    gamma: Optional[float] = 0,
    alpha: Optional[Union[float, np.ndarray]] = None,
) -> Tuple[np.ndarray, float]:
    """Return length of each filter in a wavelet basis.

    Parameters
    ----------
    freqs : np.ndarray (positive)
        Center frequencies of the filters (in Hz).
        Must be in ascending order.

    sr : number > 0 [scalar]
        Audio sampling rate

    window : str or callable
        Window function to use on filters

    filter_scale : float > 0 [scalar]
        Resolution of filter windows. Larger values use longer windows.

    gamma : number >= 0 [scalar, optional]
        Bandwidth offset for determining filter lengths, as used in
        Variable-Q transforms.

        Bandwidth for the k'th filter is determined by::

            B[k] = alpha[k] * freqs[k] + gamma

        ``alpha[k]`` is twice the relative difference between ``freqs[k+1]`` and ``freqs[k-1]``::

            alpha[k] = (freqs[k+1]-freqs[k-1]) / (freqs[k+1]+freqs[k-1])

        If ``freqs`` follows a geometric progression (as in CQT and VQT), the vector
        ``alpha`` is constant and such that::

            (1 + alpha) * freqs[k-1] = (1 - alpha) * freqs[k+1]

        Furthermore, if ``gamma=0`` (default), ``alpha`` is such that even-``k`` and
        odd-``k`` filters are interleaved::

            freqs[k-1] + B[k-1] = freqs[k+1] - B[k+1]

        If ``gamma=None`` is specified, then ``gamma`` is computed such
        that each filter has bandwidth proportional to the equivalent
        rectangular bandwidth (ERB) at frequency ``freqs[k]``::

            gamma[k] = 24.7 * alpha[k] / 0.108

        as derived by [#]_.

        .. [#] Glasberg, Brian R., and Brian CJ Moore.
            "Derivation of auditory filter shapes from notched-noise data."
            Hearing research 47.1-2 (1990): 103-138.

    alpha : number > 0 [optional]
        If only one frequency is provided (``len(freqs)==1``), then filter bandwidth
        cannot be computed.  In that case, the ``alpha`` parameter described above
        can be explicitly specified here.

        If two or more frequencies are provided, this parameter is ignored.

    Returns
    -------
    lengths : np.ndarray
        The length of each filter.
    f_cutoff : float
        The lowest frequency at which all filters' main lobes have decayed by
        at least 3dB.

        This second output serves in cqt and vqt to ensure that all wavelet
        bands remain below the Nyquist frequency.

    Notes
    -----
    This function caches at level 10.

    Raises
    ------
    ParameterError
        - If ``filter_scale`` is not strictly positive

        - If ``gamma`` is a negative number

        - If any frequencies are <= 0

        - If the frequency array is not sorted in ascending order
    """
    freqs = np.asarray(freqs)
    if filter_scale <= 0:
        raise ParameterError(f"filter_scale={filter_scale} must be positive")

    if gamma is not None and gamma < 0:
        raise ParameterError(f"gamma={gamma} must be non-negative")

    if np.any(freqs <= 0):
        raise ParameterError("frequencies must be strictly positive")

    if len(freqs) > 1 and np.any(freqs[:-1] > freqs[1:]):
        raise ParameterError(
            f"Frequency array={freqs} must be in strictly ascending order"
        )

    # We need at least 2 frequencies to infer alpha
    if len(freqs) > 1:
        # Approximate the local octave resolution
        bpo = np.empty(len(freqs))
        logf = np.log2(freqs)
        bpo[0] = 1 / (logf[1] - logf[0])
        bpo[-1] = 1 / (logf[-1] - logf[-2])
        bpo[1:-1] = 2 / (logf[2:] - logf[:-2])

        alpha = (2.0 ** (2 / bpo) - 1) / (2.0 ** (2 / bpo) + 1)
    if alpha is None:
        raise ParameterError(
            "Cannot construct a wavelet basis for a single frequency if alpha is not provided"
        )

    gamma_: Union[_FloatLike_co, np.ndarray]
    if gamma is None:
        gamma_ = alpha * 24.7 / 0.108
    else:
        gamma_ = gamma
    # Q should be capitalized here, so we suppress the name warning
    # pylint: disable=invalid-name
    Q = float(filter_scale) / alpha

    # How far up does our highest frequency reach?
    f_cutoff = max(freqs * (1 + 0.5 * window_bandwidth(window) / Q) + 0.5 * gamma_)

    # Convert frequencies to filter lengths
    lengths = Q * sr / (freqs + gamma_ / alpha)

    return lengths, f_cutoff


@cache(level=10)
def wavelet(
    *,
    freqs: np.ndarray,
    sr: float = 22050,
    window: _WindowSpec = "hann",
    filter_scale: float = 1,
    pad_fft: bool = True,
    norm: Optional[float] = 1,
    dtype: DTypeLike = np.complex64,
    gamma: float = 0,
    alpha: Optional[float] = None,
    **kwargs: Any,
) -> Tuple[np.ndarray, np.ndarray]:
    """Construct a wavelet basis using windowed complex sinusoids.

    This function constructs a wavelet filterbank at a specified set of center
    frequencies.

    Parameters
    ----------
    freqs : np.ndarray (positive)
        Center frequencies of the filters (in Hz).
        Must be in ascending order.

    sr : number > 0 [scalar]
        Audio sampling rate

    window : string, tuple, number, or function
        Windowing function to apply to filters.

    filter_scale : float > 0 [scalar]
        Scale of filter windows.
        Small values (<1) use shorter windows for higher temporal resolution.

    pad_fft : boolean
        Center-pad all filters up to the nearest integral power of 2.

        By default, padding is done with zeros, but this can be overridden
        by setting the ``mode=`` field in *kwargs*.

    norm : {inf, -inf, 0, float > 0}
        Type of norm to use for basis function normalization.
        See librosa.util.normalize

    gamma : number >= 0
        Bandwidth offset for variable-Q transforms.

    dtype : np.dtype
        The data type of the output basis.
        By default, uses 64-bit (single precision) complex floating point.

    alpha : number > 0 [optional]
        If only one frequency is provided (``len(freqs)==1``), then filter bandwidth
        cannot be computed.  In that case, the ``alpha`` parameter described above
        can be explicitly specified here.

        If two or more frequencies are provided, this parameter is ignored.

    **kwargs : additional keyword arguments
        Arguments to `np.pad()` when ``pad==True``.

    Returns
    -------
    filters : np.ndarray, ``len(filters) == n_bins``
        each ``filters[i]`` is a (complex) time-domain filter
    lengths : np.ndarray, ``len(lengths) == n_bins``
        The (fractional) length of each filter in samples

    Notes
    -----
    This function caches at level 10.

    See Also
    --------
    wavelet_lengths
    librosa.cqt
    librosa.vqt
    librosa.util.normalize

    Examples
    --------
    Create a constant-Q basis

    >>> freqs = librosa.cqt_frequencies(n_bins=84, fmin=librosa.note_to_hz('C1'))
    >>> basis, lengths = librosa.filters.wavelet(freqs=freqs, sr=22050)

    Plot one octave of filters in time and frequency

    >>> import matplotlib.pyplot as plt
    >>> basis, lengths = librosa.filters.wavelet(freqs=freqs, sr=22050)
    >>> fig, ax = plt.subplots(nrows=2, figsize=(10, 6))
    >>> notes = librosa.midi_to_note(np.arange(24, 24 + len(basis)))
    >>> for i, (f, n) in enumerate(zip(basis, notes[:12])):
    ...     f_scale = librosa.util.normalize(f) / 2
    ...     ax[0].plot(i + f_scale.real)
    ...     ax[0].plot(i + f_scale.imag, linestyle=':')
    >>> ax[0].set(yticks=np.arange(len(notes[:12])), yticklabels=notes[:12],
    ...           ylabel='CQ filters',
    ...           title='CQ filters (one octave, time domain)',
    ...           xlabel='Time (samples at 22050 Hz)')
    >>> ax[0].legend(['Real', 'Imaginary'])
    >>> F = np.abs(np.fft.fftn(basis, axes=[-1]))
    >>> # Keep only the positive frequencies
    >>> F = F[:, :(1 + F.shape[1] // 2)]
    >>> librosa.display.specshow(F, x_axis='linear', y_axis='cqt_note', ax=ax[1])
    >>> ax[1].set(ylabel='CQ filters', title='CQ filter magnitudes (frequency domain)')
    """

    # Pass-through parameters to get the filter lengths
    lengths, _ = wavelet_lengths(
        freqs=freqs,
        sr=sr,
        window=window,
        filter_scale=filter_scale,
        gamma=gamma,
        alpha=alpha,
    )

    # Build the filters
    filters = []
    for ilen, freq in zip(lengths, freqs):
        # Build the filter: note, length will be ceil(ilen)
        sig = util.phasor(
            np.arange(-ilen // 2, ilen // 2, dtype=float) * 2 * np.pi * freq / sr
        )

        # Apply the windowing function
        sig *= __float_window(window)(len(sig))

        # Normalize
        sig = util.normalize(sig, norm=norm)

        filters.append(sig)

    # Pad and stack
    max_len = max(lengths)
    if pad_fft:
        max_len = int(2.0 ** (np.ceil(np.log2(max_len))))
    else:
        max_len = int(np.ceil(max_len))

    filters = np.asarray(
        [util.pad_center(filt, size=max_len, **kwargs) for filt in filters], dtype=dtype
    )

    return filters, lengths


@cache(level=10)
def cq_to_chroma(
    n_input: int,
    *,
    bins_per_octave: int = 12,
    n_chroma: int = 12,
    fmin: Optional[_FloatLike_co] = None,
    window: Optional[np.ndarray] = None,
    base_c: bool = True,
    dtype: DTypeLike = np.float32,
) -> np.ndarray:
    """Construct a linear transformation matrix to map Constant-Q bins
    onto chroma bins (i.e., pitch classes).

    Parameters
    ----------
    n_input : int > 0 [scalar]
        Number of input components (CQT bins)
    bins_per_octave : int > 0 [scalar]
        How many bins per octave in the CQT
    n_chroma : int > 0 [scalar]
        Number of output bins (per octave) in the chroma
    fmin : None or float > 0
        Center frequency of the first constant-Q channel.
        Default: 'C1' ~= 32.7 Hz
    window : None or np.ndarray
        If provided, the cq_to_chroma filter bank will be
        convolved with ``window``.
    base_c : bool
        If True, the first chroma bin will start at 'C'
        If False, the first chroma bin will start at 'A'
    dtype : np.dtype
        The data type of the output basis.
        By default, uses 32-bit (single-precision) floating point.

    Returns
    -------
    cq_to_chroma : np.ndarray [shape=(n_chroma, n_input)]
        Transformation matrix: ``Chroma = np.dot(cq_to_chroma, CQT)``

    Raises
    ------
    ParameterError
        If ``n_input`` is not an integer multiple of ``n_chroma``

    Notes
    -----
    This function caches at level 10.

    Examples
    --------
    Get a CQT, and wrap bins to chroma

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> CQT = np.abs(librosa.cqt(y, sr=sr))
    >>> chroma_map = librosa.filters.cq_to_chroma(CQT.shape[0])
    >>> chromagram = chroma_map.dot(CQT)
    >>> # Max-normalize each time step
    >>> chromagram = librosa.util.normalize(chromagram, axis=0)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=3, sharex=True)
    >>> imgcq = librosa.display.specshow(librosa.amplitude_to_db(CQT,
    ...                                                         ref=np.max),
    ...                                  y_axis='cqt_note', x_axis='time',
    ...                                  ax=ax[0])
    >>> ax[0].set(title='CQT Power')
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(chromagram, y_axis='chroma', x_axis='time',
    ...                          ax=ax[1])
    >>> ax[1].set(title='Chroma (wrapped CQT)')
    >>> ax[1].label_outer()
    >>> chroma = librosa.feature.chroma_stft(y=y, sr=sr)
    >>> imgchroma = librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax[2])
    >>> ax[2].set(title='librosa.feature.chroma_stft')
    """

    # How many fractional bins are we merging?
    n_merge = float(bins_per_octave) / n_chroma

    fmin_: _FloatLike_co
    if fmin is None:
        fmin_ = note_to_hz("C1")
    else:
        fmin_ = fmin

    if np.mod(n_merge, 1) != 0:
        raise ParameterError(
            "Incompatible CQ merge: "
            "input bins must be an "
            "integer multiple of output bins."
        )

    # Tile the identity to merge fractional bins
    cq_to_ch = np.repeat(np.eye(n_chroma), int(n_merge), axis=1)

    # Roll it left to center on the target bin
    cq_to_ch = np.roll(cq_to_ch, -int(n_merge // 2), axis=1)

    # How many octaves are we repeating?
    n_octaves = np.ceil(float(n_input) / bins_per_octave)

    # Repeat and trim
    cq_to_ch = np.tile(cq_to_ch, int(n_octaves))[:, :n_input]

    # What's the note number of the first bin in the CQT?
    # midi uses 12 bins per octave here
    midi_0 = np.mod(hz_to_midi(fmin_), 12)

    if base_c:
        # rotate to C
        roll = midi_0
    else:
        # rotate to A
        roll = midi_0 - 9

    # Adjust the roll in terms of how many chroma we want out
    # We need to be careful with rounding here
    roll = int(np.round(roll * (n_chroma / 12.0)))

    # Apply the roll
    cq_to_ch = np.roll(cq_to_ch, roll, axis=0).astype(dtype)

    if window is not None:
        cq_to_ch = scipy.signal.convolve(cq_to_ch, np.atleast_2d(window), mode="same")

    return cq_to_ch


@cache(level=10)
def window_bandwidth(window: _WindowSpec, n: int = 1000) -> float:
    """Get the equivalent noise bandwidth (ENBW) of a window function.

    The ENBW of a window is defined by [#]_ (equation 11) as the normalized
    ratio of the sum of squares to the square of sums::

        enbw = n * sum(window**2) / sum(window)**2

    .. [#] Harris, F. J.
        "On the use of windows for harmonic analysis with the discrete Fourier transform."
        Proceedings of the IEEE, 66(1), 51-83.  1978.

    Parameters
    ----------
    window : callable or string
        A window function, or the name of a window function.
        Examples:
        - scipy.signal.hann
        - 'boxcar'
    n : int > 0
        The number of coefficients to use in estimating the
        window bandwidth

    Returns
    -------
    bandwidth : float
        The equivalent noise bandwidth (in FFT bins) of the
        given window function

    Notes
    -----
    This function caches at level 10.

    See Also
    --------
    get_window
    """

    if hasattr(window, "__name__"):
        key = window.__name__
    else:
        key = window

    if key not in WINDOW_BANDWIDTHS:
        win = get_window(window, n)
        WINDOW_BANDWIDTHS[key] = (
            n * np.sum(win**2) / (np.sum(win) ** 2 + util.tiny(win))
        )

    return WINDOW_BANDWIDTHS[key]


@cache(level=10)
def get_window(
    window: _WindowSpec,
    Nx: int,
    *,
    fftbins: Optional[bool] = True,
) -> np.ndarray:
    """Compute a window function.

    This is a wrapper for `scipy.signal.get_window` that additionally
    supports callable or pre-computed windows.

    Parameters
    ----------
    window : string, tuple, number, callable, or list-like
        The window specification:

        - If string, it's the name of the window function (e.g., `'hann'`)
        - If tuple, it's the name of the window function and any parameters
          (e.g., `('kaiser', 4.0)`)
        - If numeric, it is treated as the beta parameter of the `'kaiser'`
          window, as in `scipy.signal.get_window`.
        - If callable, it's a function that accepts one integer argument
          (the window length)
        - If list-like, it's a pre-computed window of the correct length `Nx`

    Nx : int > 0
        The length of the window

    fftbins : bool, optional
        If True (default), create a periodic window for use with FFT
        If False, create a symmetric window for filter design applications.

    Returns
    -------
    get_window : np.ndarray
        A window of length `Nx` and type `window`

    See Also
    --------
    scipy.signal.get_window

    Notes
    -----
    This function caches at level 10.

    Raises
    ------
    ParameterError
        If `window` is supplied as a vector of length != `n_fft`,
        or is otherwise mis-specified.
    """
    if callable(window):
        return window(Nx)

    elif isinstance(window, (str, tuple)) or np.isscalar(window):
        # TODO: if we add custom window functions in librosa, call them here

        win: np.ndarray = scipy.signal.get_window(window, Nx, fftbins=fftbins)
        return win

    elif isinstance(window, (np.ndarray, list)):
        if len(window) == Nx:
            return np.asarray(window)

        raise ParameterError(f"Window size mismatch: {len(window):d} != {Nx:d}")
    else:
        raise ParameterError(f"Invalid window specification: {window!r}")


@cache(level=10)
def _multirate_fb(
    center_freqs: Optional[np.ndarray] = None,
    sample_rates: Optional[np.ndarray] = None,
    Q: float = 25.0,
    passband_ripple: float = 1,
    stopband_attenuation: float = 50,
    ftype: str = "ellip",
    flayout: str = "sos",
) -> Tuple[List[Any], np.ndarray]:
    r"""Helper function to construct a multirate filterbank.

     A filter bank consists of multiple band-pass filters which divide the input signal
     into subbands. In the case of a multirate filter bank, the band-pass filters
     operate with resampled versions of the input signal, e.g. to keep the length
     of a filter constant while shifting its center frequency.

     This implementation uses `scipy.signal.iirdesign` to design the filters.

    Parameters
    ----------
    center_freqs : np.ndarray [shape=(n,), dtype=float]
        Center frequencies of the filter kernels.
        Also defines the number of filters in the filterbank.

    sample_rates : np.ndarray [shape=(n,), dtype=float]
        Samplerate for each filter (used for multirate filterbank).

    Q : float
        Q factor (influences the filter bandwidth).

    passband_ripple : float
        The maximum loss in the passband (dB)
        See `scipy.signal.iirdesign` for details.

    stopband_attenuation : float
        The minimum attenuation in the stopband (dB)
        See `scipy.signal.iirdesign` for details.

    ftype : str
        The type of IIR filter to design
        See `scipy.signal.iirdesign` for details.

    flayout : string
        Valid `output` argument for `scipy.signal.iirdesign`.

        - If `ba`, returns numerators/denominators of the transfer functions,
          used for filtering with `scipy.signal.filtfilt`.
          Can be unstable for high-order filters.

        - If `sos`, returns a series of second-order filters,
          used for filtering with `scipy.signal.sosfiltfilt`.
          Minimizes numerical precision errors for high-order filters, but is slower.

        - If `zpk`, returns zeros, poles, and system gains of the transfer functions.

    Returns
    -------
    filterbank : list [shape=(n,), dtype=float]
        Each list entry comprises the filter coefficients for a single filter.
    sample_rates : np.ndarray [shape=(n,), dtype=float]
        Samplerate for each filter.

    Notes
    -----
    This function caches at level 10.

    See Also
    --------
    scipy.signal.iirdesign

    Raises
    ------
    ParameterError
        If ``center_freqs`` is ``None``.
        If ``sample_rates`` is ``None``.
        If ``center_freqs.shape`` does not match ``sample_rates.shape``.
    """

    if center_freqs is None:
        raise ParameterError("center_freqs must be provided.")

    if sample_rates is None:
        raise ParameterError("sample_rates must be provided.")

    if center_freqs.shape != sample_rates.shape:
        raise ParameterError(
            "Number of provided center_freqs and sample_rates must be equal."
        )

    nyquist = 0.5 * sample_rates
    filter_bandwidths = center_freqs / float(Q)

    filterbank = []

    for cur_center_freq, cur_nyquist, cur_bw in zip(
        center_freqs, nyquist, filter_bandwidths
    ):
        passband_freqs = [
            cur_center_freq - 0.5 * cur_bw,
            cur_center_freq + 0.5 * cur_bw,
        ] / cur_nyquist
        stopband_freqs = [
            cur_center_freq - cur_bw,
            cur_center_freq + cur_bw,
        ] / cur_nyquist

        cur_filter = scipy.signal.iirdesign(
            passband_freqs,
            stopband_freqs,
            passband_ripple,
            stopband_attenuation,
            analog=False,
            ftype=ftype,
            output=flayout,
        )

        filterbank.append(cur_filter)

    return filterbank, sample_rates


@cache(level=10)
def mr_frequencies(tuning: float) -> Tuple[np.ndarray, np.ndarray]:
    r"""Helper function for generating center frequency and sample rate pairs.

    This function will return center frequency and corresponding sample rates
    to obtain similar pitch filterbank settings as described in [#]_.
    Instead of starting with MIDI pitch `A0`, we start with `C0`.

    .. [#] Müller, Meinard.
           "Information Retrieval for Music and Motion."
           Springer Verlag. 2007.

    Parameters
    ----------
    tuning : float [scalar]
        Tuning deviation from A440, measure as a fraction of the equally
        tempered semitone (1/12 of an octave).

    Returns
    -------
    center_freqs : np.ndarray [shape=(n,), dtype=float]
        Center frequencies of the filter kernels.
        Also defines the number of filters in the filterbank.
    sample_rates : np.ndarray [shape=(n,), dtype=float]
        Sample rate for each filter, used for multirate filterbank.

    Notes
    -----
    This function caches at level 10.

    See Also
    --------
    librosa.filters.semitone_filterbank
    """

    center_freqs = midi_to_hz(np.arange(24 + tuning, 109 + tuning))

    sample_rates = np.asarray(
        len(np.arange(0, 36))
        * [
            882.0,
        ]
        + len(np.arange(36, 70))
        * [
            4410.0,
        ]
        + len(np.arange(70, 85))
        * [
            22050.0,
        ]
    )

    return center_freqs, sample_rates


def semitone_filterbank(
    *,
    center_freqs: Optional[np.ndarray] = None,
    tuning: float = 0.0,
    sample_rates: Optional[np.ndarray] = None,
    flayout: str = "ba",
    **kwargs: Any,
) -> Tuple[List[Any], np.ndarray]:
    r"""Construct a multi-rate bank of infinite-impulse response (IIR)
    band-pass filters at user-defined center frequencies and sample rates.

    By default, these center frequencies are set equal to the 88 fundamental
    frequencies of the grand piano keyboard, according to a pitch tuning standard
    of A440, that is, note A above middle C set to 440 Hz. The center frequencies
    are tuned to the twelve-tone equal temperament, which means that they grow
    exponentially at a rate of 2**(1/12), that is, twelve notes per octave.

    The A440 tuning can be changed by the user while keeping twelve-tone equal
    temperament. While A440 is currently the international standard in the music
    industry (ISO 16), some orchestras tune to A441-A445, whereas baroque musicians
    tune to A415.

    See [#]_ for details.

    .. [#] Müller, Meinard.
           "Information Retrieval for Music and Motion."
           Springer Verlag. 2007.

    Parameters
    ----------
    center_freqs : np.ndarray [shape=(n,), dtype=float]
        Center frequencies of the filter kernels.
        Also defines the number of filters in the filterbank.
    tuning : float [scalar]
        Tuning deviation from A440 as a fraction of a semitone (1/12 of an octave
        in equal temperament).
    sample_rates : np.ndarray [shape=(n,), dtype=float]
        Sample rates of each filter in the multirate filterbank.
    flayout : string
        - If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`.
          Can be unstable for high-order filters.
        - If `sos`, a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`.
          Minimizes numerical precision errors for high-order filters, but is slower.
    **kwargs : additional keyword arguments
        Additional arguments to the private function `_multirate_fb()`.

    Returns
    -------
    filterbank : list [shape=(n,), dtype=float]
        Each list entry contains the filter coefficients for a single filter.
    fb_sample_rates : np.ndarray [shape=(n,), dtype=float]
        Sample rate for each filter.

    See Also
    --------
    librosa.cqt
    librosa.iirt
    librosa.filters.mr_frequencies
    scipy.signal.iirdesign

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> import numpy as np
    >>> import scipy.signal
    >>> semitone_filterbank, sample_rates = librosa.filters.semitone_filterbank(
    ...     center_freqs=librosa.midi_to_hz(np.arange(60, 72)),
    ...     sample_rates=np.repeat(4410.0, 12),
    ...     flayout='sos'
    ...     )
    >>> magnitudes = []
    >>> for cur_sr, cur_filter in zip(sample_rates, semitone_filterbank):
    ...     w, h = scipy.signal.sosfreqz(cur_filter,fs=cur_sr, worN=1025)
    ...     magnitudes.append(20 * np.log10(np.abs(h)))
    >>> fig, ax = plt.subplots(figsize=(12,6))
    >>> img = librosa.display.specshow(
    ...     np.array(magnitudes),
    ...     x_axis="hz",
    ...     sr=4410,
    ...     y_coords=librosa.midi_to_hz(np.arange(60, 72)),
    ...     vmin=-60,
    ...     vmax=3,
    ...     ax=ax
    ...     )
    >>> fig.colorbar(img, ax=ax, format="%+2.f dB", label="Magnitude (dB)")
    >>> ax.set(
    ...     xlim=[200, 600],
    ...     yticks=librosa.midi_to_hz(np.arange(60, 72)),
    ...     title='Magnitude Responses of the Pitch Filterbank',
    ...     xlabel='Frequency (Hz)',
    ...     ylabel='Semitone filter center frequency (Hz)'
    ... )
    """

    if (center_freqs is None) and (sample_rates is None):
        center_freqs, sample_rates = mr_frequencies(tuning)

    filterbank, fb_sample_rates = _multirate_fb(
        center_freqs=center_freqs, sample_rates=sample_rates, flayout=flayout, **kwargs
    )

    return filterbank, fb_sample_rates


@jit(nopython=True, cache=False)
def __window_ss_fill(x, win_sq, n_frames, hop_length):  # pragma: no cover
    """Helper function for window sum-square calculation."""

    n = len(x)
    n_fft = len(win_sq)
    for i in range(n_frames):
        sample = i * hop_length
        x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]


def window_sumsquare(
    *,
    window: _WindowSpec,
    n_frames: int,
    hop_length: int = 512,
    win_length: Optional[int] = None,
    n_fft: int = 2048,
    dtype: DTypeLike = np.float32,
    norm: Optional[float] = None,
) -> np.ndarray:
    """Compute the sum-square envelope of a window function at a given hop length.

    This is used to estimate modulation effects induced by windowing observations
    in short-time Fourier transforms.

    Parameters
    ----------
    window : string, tuple, number, callable, or list-like
        Window specification, as in `get_window`
    n_frames : int > 0
        The number of analysis frames
    hop_length : int > 0
        The number of samples to advance between frames
    win_length : [optional]
        The length of the window function.  By default, this matches ``n_fft``.
    n_fft : int > 0
        The length of each analysis frame.
    dtype : np.dtype
        The data type of the output
    norm : {np.inf, -np.inf, 0, float > 0, None}
        Normalization mode used in window construction.
        Note that this does not affect the squaring operation.

    Returns
    -------
    wss : np.ndarray, shape=``(n_fft + hop_length * (n_frames - 1))``
        The sum-squared envelope of the window function

    Examples
    --------
    For a fixed frame length (2048), compare modulation effects for a Hann window
    at different hop lengths:

    >>> n_frames = 50
    >>> wss_256 = librosa.filters.window_sumsquare(window='hann', n_frames=n_frames, hop_length=256)
    >>> wss_512 = librosa.filters.window_sumsquare(window='hann', n_frames=n_frames, hop_length=512)
    >>> wss_1024 = librosa.filters.window_sumsquare(window='hann', n_frames=n_frames, hop_length=1024)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=3, sharey=True)
    >>> ax[0].plot(wss_256)
    >>> ax[0].set(title='hop_length=256')
    >>> ax[1].plot(wss_512)
    >>> ax[1].set(title='hop_length=512')
    >>> ax[2].plot(wss_1024)
    >>> ax[2].set(title='hop_length=1024')
    """
    if win_length is None:
        win_length = n_fft

    n = n_fft + hop_length * (n_frames - 1)
    x = np.zeros(n, dtype=dtype)

    # Compute the squared window at the desired length
    win_sq = get_window(window, win_length)
    win_sq = util.normalize(win_sq, norm=norm) ** 2
    win_sq = util.pad_center(win_sq, size=n_fft)

    # Fill the envelope
    __window_ss_fill(x, win_sq, n_frames, hop_length)

    return x


@cache(level=10)
def diagonal_filter(
    window: _WindowSpec,
    n: int,
    *,
    slope: float = 1.0,
    angle: Optional[float] = None,
    zero_mean: bool = False,
) -> np.ndarray:
    """Build a two-dimensional diagonal filter.

    This is primarily used for smoothing recurrence or self-similarity matrices.

    Parameters
    ----------
    window : string, tuple, number, callable, or list-like
        The window function to use for the filter.

        See `get_window` for details.

        Note that the window used here should be non-negative.

    n : int > 0
        the length of the filter

    slope : float
        The slope of the diagonal filter to produce

    angle : float or None
        If given, the slope parameter is ignored,
        and angle directly sets the orientation of the filter (in radians).
        Otherwise, angle is inferred as `arctan(slope)`.

    zero_mean : bool
        If True, a zero-mean filter is used.
        Otherwise, a non-negative averaging filter is used.

        This should be enabled if you want to enhance paths and suppress
        blocks.

    Returns
    -------
    kernel : np.ndarray, shape=[(m, m)]
        The 2-dimensional filter kernel

    Notes
    -----
    This function caches at level 10.
    """

    if angle is None:
        angle = np.arctan(slope)

    win = np.diag(get_window(window, n, fftbins=False))

    if not np.isclose(angle, np.pi / 4):
        win = scipy.ndimage.rotate(
            win, 45 - angle * 180 / np.pi, order=5, prefilter=False
        )

    np.clip(win, 0, None, out=win)
    win /= win.sum()

    if zero_mean:
        win -= win.mean()

    return win