File size: 9,936 Bytes
4a367ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Feature manipulation utilities"""

import numpy as np
import scipy.signal
from numba import jit

from .._cache import cache
from ..util.exceptions import ParameterError
from typing import Any

__all__ = ["delta", "stack_memory"]


@cache(level=40)
def delta(
    data: np.ndarray,
    *,
    width: int = 9,
    order: int = 1,
    axis: int = -1,
    mode: str = "interp",
    **kwargs: Any,
) -> np.ndarray:
    r"""Compute delta features: local estimate of the derivative
    of the input data along the selected axis.

    Delta features are computed Savitsky-Golay filtering.

    Parameters
    ----------
    data : np.ndarray
        the input data matrix (eg, spectrogram)

    width : int, positive, odd [scalar]
        Number of frames over which to compute the delta features.
        Cannot exceed the length of ``data`` along the specified axis.

        If ``mode='interp'``, then ``width`` must be at least ``data.shape[axis]``.

    order : int > 0 [scalar]
        the order of the difference operator.
        1 for first derivative, 2 for second, etc.

    axis : int [scalar]
        the axis along which to compute deltas.
        Default is -1 (columns).

    mode : str, {'interp', 'nearest', 'mirror', 'constant', 'wrap'}
        Padding mode for estimating differences at the boundaries.

    **kwargs : additional keyword arguments
        See `scipy.signal.savgol_filter`

    Returns
    -------
    delta_data : np.ndarray [shape=(..., t)]
        delta matrix of ``data`` at specified order

    Notes
    -----
    This function caches at level 40.

    See Also
    --------
    scipy.signal.savgol_filter

    Examples
    --------
    Compute MFCC deltas, delta-deltas

    >>> y, sr = librosa.load(librosa.ex('libri1'), duration=5)
    >>> mfcc = librosa.feature.mfcc(y=y, sr=sr)
    >>> mfcc_delta = librosa.feature.delta(mfcc)
    >>> mfcc_delta
    array([[-5.713e+02, -5.697e+02, ..., -1.522e+02, -1.224e+02],
           [ 1.104e+01,  1.330e+01, ...,  2.089e+02,  1.698e+02],
           ...,
           [ 2.829e+00,  1.933e+00, ..., -3.149e+00,  2.294e-01],
           [ 2.890e+00,  2.187e+00, ...,  6.959e+00, -1.039e+00]],
          dtype=float32)

    >>> mfcc_delta2 = librosa.feature.delta(mfcc, order=2)
    >>> mfcc_delta2
    array([[-1.195, -1.195, ..., -4.328, -4.328],
           [-1.566, -1.566, ..., -9.949, -9.949],
           ...,
           [ 0.707,  0.707, ...,  2.287,  2.287],
           [ 0.655,  0.655, ..., -1.719, -1.719]], dtype=float32)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
    >>> img1 = librosa.display.specshow(mfcc, ax=ax[0], x_axis='time')
    >>> ax[0].set(title='MFCC')
    >>> ax[0].label_outer()
    >>> img2 = librosa.display.specshow(mfcc_delta, ax=ax[1], x_axis='time')
    >>> ax[1].set(title=r'MFCC-$\Delta$')
    >>> ax[1].label_outer()
    >>> img3 = librosa.display.specshow(mfcc_delta2, ax=ax[2], x_axis='time')
    >>> ax[2].set(title=r'MFCC-$\Delta^2$')
    >>> fig.colorbar(img1, ax=[ax[0]])
    >>> fig.colorbar(img2, ax=[ax[1]])
    >>> fig.colorbar(img3, ax=[ax[2]])
    """

    data = np.atleast_1d(data)

    if mode == "interp" and width > data.shape[axis]:
        raise ParameterError(
            f"when mode='interp', width={width} "
            f"cannot exceed data.shape[axis]={data.shape[axis]}"
        )

    if width < 3 or np.mod(width, 2) != 1:
        raise ParameterError("width must be an odd integer >= 3")

    if order <= 0 or not isinstance(order, (int, np.integer)):
        raise ParameterError("order must be a positive integer")

    kwargs.pop("deriv", None)
    kwargs.setdefault("polyorder", order)
    result: np.ndarray = scipy.signal.savgol_filter(
        data, width, deriv=order, axis=axis, mode=mode, **kwargs
    )
    return result


@cache(level=40)
def stack_memory(
    data: np.ndarray, *, n_steps: int = 2, delay: int = 1, **kwargs: Any
) -> np.ndarray:
    """Short-term history embedding: vertically concatenate a data
    vector or matrix with delayed copies of itself.

    Each column ``data[:, i]`` is mapped to::

        data[..., i] ->  [data[..., i],
                          data[..., i - delay],
                          ...
                          data[..., i - (n_steps-1)*delay]]

    For columns ``i < (n_steps - 1) * delay``, the data will be padded.
    By default, the data is padded with zeros, but this behavior can be
    overridden by supplying additional keyword arguments which are passed
    to `np.pad()`.

    Parameters
    ----------
    data : np.ndarray [shape=(..., d, t)]
        Input data matrix.  If ``data`` is a vector (``data.ndim == 1``),
        it will be interpreted as a row matrix and reshaped to ``(1, t)``.

    n_steps : int > 0 [scalar]
        embedding dimension, the number of steps back in time to stack

    delay : int != 0 [scalar]
        the number of columns to step.

        Positive values embed from the past (previous columns).

        Negative values embed from the future (subsequent columns).

    **kwargs : additional keyword arguments
        Additional arguments to pass to `numpy.pad`

    Returns
    -------
    data_history : np.ndarray [shape=(..., m * d, t)]
        data augmented with lagged copies of itself,
        where ``m == n_steps - 1``.

    Notes
    -----
    This function caches at level 40.

    Examples
    --------
    Keep two steps (current and previous)

    >>> data = np.arange(-3, 3)
    >>> librosa.feature.stack_memory(data)
    array([[-3, -2, -1,  0,  1,  2],
           [ 0, -3, -2, -1,  0,  1]])

    Or three steps

    >>> librosa.feature.stack_memory(data, n_steps=3)
    array([[-3, -2, -1,  0,  1,  2],
           [ 0, -3, -2, -1,  0,  1],
           [ 0,  0, -3, -2, -1,  0]])

    Use reflection padding instead of zero-padding

    >>> librosa.feature.stack_memory(data, n_steps=3, mode='reflect')
    array([[-3, -2, -1,  0,  1,  2],
           [-2, -3, -2, -1,  0,  1],
           [-1, -2, -3, -2, -1,  0]])

    Or pad with edge-values, and delay by 2

    >>> librosa.feature.stack_memory(data, n_steps=3, delay=2, mode='edge')
    array([[-3, -2, -1,  0,  1,  2],
           [-3, -3, -3, -2, -1,  0],
           [-3, -3, -3, -3, -3, -2]])

    Stack time-lagged beat-synchronous chroma edge padding

    >>> y, sr = librosa.load(librosa.ex('sweetwaltz'), duration=10)
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512)
    >>> beats = librosa.util.fix_frames(beats, x_min=0)
    >>> chroma_sync = librosa.util.sync(chroma, beats)
    >>> chroma_lag = librosa.feature.stack_memory(chroma_sync, n_steps=3,
    ...                                           mode='edge')

    Plot the result

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512)
    >>> librosa.display.specshow(chroma_lag, y_axis='chroma', x_axis='time',
    ...                          x_coords=beat_times, ax=ax)
    >>> ax.text(1.0, 1/6, "Lag=0", transform=ax.transAxes, rotation=-90, ha="left", va="center")
    >>> ax.text(1.0, 3/6, "Lag=1", transform=ax.transAxes, rotation=-90, ha="left", va="center")
    >>> ax.text(1.0, 5/6, "Lag=2", transform=ax.transAxes, rotation=-90, ha="left", va="center")
    >>> ax.set(title='Time-lagged chroma', ylabel="")
    """

    if n_steps < 1:
        raise ParameterError("n_steps must be a positive integer")

    if delay == 0:
        raise ParameterError("delay must be a non-zero integer")

    data = np.atleast_2d(data)
    t = data.shape[-1]

    if t < 1:
        raise ParameterError(
            "Cannot stack memory when input data has "
            f"no columns. Given data.shape={data.shape}"
        )
    kwargs.setdefault("mode", "constant")

    if kwargs["mode"] == "constant":
        kwargs.setdefault("constant_values", [0])

    padding = [(0, 0) for _ in range(data.ndim)]

    # Pad the end with zeros, which will roll to the front below
    if delay > 0:
        padding[-1] = (int((n_steps - 1) * delay), 0)
    else:
        padding[-1] = (0, int((n_steps - 1) * -delay))

    data = np.pad(data, padding, **kwargs)

    # Construct the shape of the target array
    shape = list(data.shape)
    shape[-2] = shape[-2] * n_steps
    shape[-1] = t
    shape = tuple(shape)

    # Construct the output array to match layout and dtype of input
    history = np.empty_like(data, shape=shape)

    # Populate the output array
    __stack(history, data, n_steps, delay)

    return history


@jit(nopython=True, cache=False)
def __stack(history, data, n_steps, delay):
    """Memory-stacking helper function.

    Parameters
    ----------
    history : output array (2-dimensional)
    data : pre-padded input array (2-dimensional)
    n_steps : int > 0, the number of steps to stack
    delay : int != 0, the amount of delay between steps

    Returns
    -------
    None
        Output is stored directly in the history array
    """
    # Dimension of each copy of the data
    d = data.shape[-2]

    # Total number of time-steps to output
    t = history.shape[-1]

    if delay > 0:
        for step in range(n_steps):
            q = n_steps - 1 - step
            # nth block is original shifted left by n*delay steps
            history[..., step * d : (step + 1) * d, :] = data[
                ..., q * delay : q * delay + t
            ]
    else:
        # Handle the last block separately to avoid -t:0 empty slices
        history[..., -d:, :] = data[..., -t:]

        for step in range(n_steps - 1):
            # nth block is original shifted right by n*delay steps
            q = n_steps - 1 - step
            history[..., step * d : (step + 1) * d, :] = data[
                ..., -t + q * delay : q * delay
            ]