Spaces:
Configuration error
Configuration error
File size: 9,936 Bytes
4a367ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Feature manipulation utilities"""
import numpy as np
import scipy.signal
from numba import jit
from .._cache import cache
from ..util.exceptions import ParameterError
from typing import Any
__all__ = ["delta", "stack_memory"]
@cache(level=40)
def delta(
data: np.ndarray,
*,
width: int = 9,
order: int = 1,
axis: int = -1,
mode: str = "interp",
**kwargs: Any,
) -> np.ndarray:
r"""Compute delta features: local estimate of the derivative
of the input data along the selected axis.
Delta features are computed Savitsky-Golay filtering.
Parameters
----------
data : np.ndarray
the input data matrix (eg, spectrogram)
width : int, positive, odd [scalar]
Number of frames over which to compute the delta features.
Cannot exceed the length of ``data`` along the specified axis.
If ``mode='interp'``, then ``width`` must be at least ``data.shape[axis]``.
order : int > 0 [scalar]
the order of the difference operator.
1 for first derivative, 2 for second, etc.
axis : int [scalar]
the axis along which to compute deltas.
Default is -1 (columns).
mode : str, {'interp', 'nearest', 'mirror', 'constant', 'wrap'}
Padding mode for estimating differences at the boundaries.
**kwargs : additional keyword arguments
See `scipy.signal.savgol_filter`
Returns
-------
delta_data : np.ndarray [shape=(..., t)]
delta matrix of ``data`` at specified order
Notes
-----
This function caches at level 40.
See Also
--------
scipy.signal.savgol_filter
Examples
--------
Compute MFCC deltas, delta-deltas
>>> y, sr = librosa.load(librosa.ex('libri1'), duration=5)
>>> mfcc = librosa.feature.mfcc(y=y, sr=sr)
>>> mfcc_delta = librosa.feature.delta(mfcc)
>>> mfcc_delta
array([[-5.713e+02, -5.697e+02, ..., -1.522e+02, -1.224e+02],
[ 1.104e+01, 1.330e+01, ..., 2.089e+02, 1.698e+02],
...,
[ 2.829e+00, 1.933e+00, ..., -3.149e+00, 2.294e-01],
[ 2.890e+00, 2.187e+00, ..., 6.959e+00, -1.039e+00]],
dtype=float32)
>>> mfcc_delta2 = librosa.feature.delta(mfcc, order=2)
>>> mfcc_delta2
array([[-1.195, -1.195, ..., -4.328, -4.328],
[-1.566, -1.566, ..., -9.949, -9.949],
...,
[ 0.707, 0.707, ..., 2.287, 2.287],
[ 0.655, 0.655, ..., -1.719, -1.719]], dtype=float32)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
>>> img1 = librosa.display.specshow(mfcc, ax=ax[0], x_axis='time')
>>> ax[0].set(title='MFCC')
>>> ax[0].label_outer()
>>> img2 = librosa.display.specshow(mfcc_delta, ax=ax[1], x_axis='time')
>>> ax[1].set(title=r'MFCC-$\Delta$')
>>> ax[1].label_outer()
>>> img3 = librosa.display.specshow(mfcc_delta2, ax=ax[2], x_axis='time')
>>> ax[2].set(title=r'MFCC-$\Delta^2$')
>>> fig.colorbar(img1, ax=[ax[0]])
>>> fig.colorbar(img2, ax=[ax[1]])
>>> fig.colorbar(img3, ax=[ax[2]])
"""
data = np.atleast_1d(data)
if mode == "interp" and width > data.shape[axis]:
raise ParameterError(
f"when mode='interp', width={width} "
f"cannot exceed data.shape[axis]={data.shape[axis]}"
)
if width < 3 or np.mod(width, 2) != 1:
raise ParameterError("width must be an odd integer >= 3")
if order <= 0 or not isinstance(order, (int, np.integer)):
raise ParameterError("order must be a positive integer")
kwargs.pop("deriv", None)
kwargs.setdefault("polyorder", order)
result: np.ndarray = scipy.signal.savgol_filter(
data, width, deriv=order, axis=axis, mode=mode, **kwargs
)
return result
@cache(level=40)
def stack_memory(
data: np.ndarray, *, n_steps: int = 2, delay: int = 1, **kwargs: Any
) -> np.ndarray:
"""Short-term history embedding: vertically concatenate a data
vector or matrix with delayed copies of itself.
Each column ``data[:, i]`` is mapped to::
data[..., i] -> [data[..., i],
data[..., i - delay],
...
data[..., i - (n_steps-1)*delay]]
For columns ``i < (n_steps - 1) * delay``, the data will be padded.
By default, the data is padded with zeros, but this behavior can be
overridden by supplying additional keyword arguments which are passed
to `np.pad()`.
Parameters
----------
data : np.ndarray [shape=(..., d, t)]
Input data matrix. If ``data`` is a vector (``data.ndim == 1``),
it will be interpreted as a row matrix and reshaped to ``(1, t)``.
n_steps : int > 0 [scalar]
embedding dimension, the number of steps back in time to stack
delay : int != 0 [scalar]
the number of columns to step.
Positive values embed from the past (previous columns).
Negative values embed from the future (subsequent columns).
**kwargs : additional keyword arguments
Additional arguments to pass to `numpy.pad`
Returns
-------
data_history : np.ndarray [shape=(..., m * d, t)]
data augmented with lagged copies of itself,
where ``m == n_steps - 1``.
Notes
-----
This function caches at level 40.
Examples
--------
Keep two steps (current and previous)
>>> data = np.arange(-3, 3)
>>> librosa.feature.stack_memory(data)
array([[-3, -2, -1, 0, 1, 2],
[ 0, -3, -2, -1, 0, 1]])
Or three steps
>>> librosa.feature.stack_memory(data, n_steps=3)
array([[-3, -2, -1, 0, 1, 2],
[ 0, -3, -2, -1, 0, 1],
[ 0, 0, -3, -2, -1, 0]])
Use reflection padding instead of zero-padding
>>> librosa.feature.stack_memory(data, n_steps=3, mode='reflect')
array([[-3, -2, -1, 0, 1, 2],
[-2, -3, -2, -1, 0, 1],
[-1, -2, -3, -2, -1, 0]])
Or pad with edge-values, and delay by 2
>>> librosa.feature.stack_memory(data, n_steps=3, delay=2, mode='edge')
array([[-3, -2, -1, 0, 1, 2],
[-3, -3, -3, -2, -1, 0],
[-3, -3, -3, -3, -3, -2]])
Stack time-lagged beat-synchronous chroma edge padding
>>> y, sr = librosa.load(librosa.ex('sweetwaltz'), duration=10)
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
>>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512)
>>> beats = librosa.util.fix_frames(beats, x_min=0)
>>> chroma_sync = librosa.util.sync(chroma, beats)
>>> chroma_lag = librosa.feature.stack_memory(chroma_sync, n_steps=3,
... mode='edge')
Plot the result
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512)
>>> librosa.display.specshow(chroma_lag, y_axis='chroma', x_axis='time',
... x_coords=beat_times, ax=ax)
>>> ax.text(1.0, 1/6, "Lag=0", transform=ax.transAxes, rotation=-90, ha="left", va="center")
>>> ax.text(1.0, 3/6, "Lag=1", transform=ax.transAxes, rotation=-90, ha="left", va="center")
>>> ax.text(1.0, 5/6, "Lag=2", transform=ax.transAxes, rotation=-90, ha="left", va="center")
>>> ax.set(title='Time-lagged chroma', ylabel="")
"""
if n_steps < 1:
raise ParameterError("n_steps must be a positive integer")
if delay == 0:
raise ParameterError("delay must be a non-zero integer")
data = np.atleast_2d(data)
t = data.shape[-1]
if t < 1:
raise ParameterError(
"Cannot stack memory when input data has "
f"no columns. Given data.shape={data.shape}"
)
kwargs.setdefault("mode", "constant")
if kwargs["mode"] == "constant":
kwargs.setdefault("constant_values", [0])
padding = [(0, 0) for _ in range(data.ndim)]
# Pad the end with zeros, which will roll to the front below
if delay > 0:
padding[-1] = (int((n_steps - 1) * delay), 0)
else:
padding[-1] = (0, int((n_steps - 1) * -delay))
data = np.pad(data, padding, **kwargs)
# Construct the shape of the target array
shape = list(data.shape)
shape[-2] = shape[-2] * n_steps
shape[-1] = t
shape = tuple(shape)
# Construct the output array to match layout and dtype of input
history = np.empty_like(data, shape=shape)
# Populate the output array
__stack(history, data, n_steps, delay)
return history
@jit(nopython=True, cache=False)
def __stack(history, data, n_steps, delay):
"""Memory-stacking helper function.
Parameters
----------
history : output array (2-dimensional)
data : pre-padded input array (2-dimensional)
n_steps : int > 0, the number of steps to stack
delay : int != 0, the amount of delay between steps
Returns
-------
None
Output is stored directly in the history array
"""
# Dimension of each copy of the data
d = data.shape[-2]
# Total number of time-steps to output
t = history.shape[-1]
if delay > 0:
for step in range(n_steps):
q = n_steps - 1 - step
# nth block is original shifted left by n*delay steps
history[..., step * d : (step + 1) * d, :] = data[
..., q * delay : q * delay + t
]
else:
# Handle the last block separately to avoid -t:0 empty slices
history[..., -d:, :] = data[..., -t:]
for step in range(n_steps - 1):
# nth block is original shifted right by n*delay steps
q = n_steps - 1 - step
history[..., step * d : (step + 1) * d, :] = data[
..., -t + q * delay : q * delay
]
|