File size: 6,714 Bytes
de0db89
 
3518b5f
de0db89
 
 
3518b5f
de0db89
 
 
 
 
 
35bc545
3518b5f
 
acc7f4b
 
 
 
 
de0db89
77248af
de0db89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8900f
de0db89
 
3518b5f
de0db89
 
 
 
 
 
 
 
 
3518b5f
 
acc7f4b
 
3518b5f
 
acc7f4b
de0db89
 
 
 
 
 
 
4434e29
920c999
cc5a61c
de0db89
 
 
77248af
 
de0db89
 
77248af
de0db89
 
3518b5f
 
 
 
 
 
 
 
 
 
649234d
3518b5f
de0db89
920c999
cc5a61c
 
acc7f4b
8e214b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline
from diffusers.schedulers import FlaxPNDMScheduler
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np

# Custom Scheduler
class CustomFlaxPNDMScheduler(FlaxPNDMScheduler):
    def add_noise(self, state, original_samples, noise, timesteps):
        # Explicitly cast timesteps to int32
        timesteps = timesteps.astype(jnp.int32)
        return super().add_noise(state, original_samples, noise, timesteps)

# Set up cache directories
cache_dir = "/tmp/huggingface_cache"
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)

print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")

# Function to load or download the model
def get_model(model_id, revision):
    model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
    print(f"Model cache file: {model_cache_file}")
    if os.path.exists(model_cache_file):
        print("Loading model from cache...")
        with open(model_cache_file, 'rb') as f:
            return pickle.load(f)
    else:
        print("Downloading model...")
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            model_id, 
            revision=revision,
            dtype=jnp.float32,
        )
        with open(model_cache_file, 'wb') as f:
            pickle.dump((pipeline, params), f)
        return pipeline, params

# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")

# Use custom scheduler
custom_scheduler = CustomFlaxPNDMScheduler.from_config(pipeline.scheduler.config)
pipeline.scheduler = custom_scheduler

# Extract UNet from pipeline
unet = pipeline.unet

# Load and preprocess your dataset
def preprocess_images(examples):
    def process_image(image):
        if isinstance(image, str):
            image = Image.open(image)
        if not isinstance(image, Image.Image):
            raise ValueError(f"Unexpected image type: {type(image)}")
        image = image.convert("RGB").resize((512, 512))
        image = np.array(image).astype(np.float32) / 255.0
        return image.transpose(2, 0, 1)

    return {"pixel_values": [process_image(img) for img in examples["image"]]}

# Load dataset from Hugging Face
dataset_name = "uruguayai/montevideo"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")

print(f"Dataset name: {dataset_name}")
print(f"Dataset cache file: {dataset_cache_file}")

if os.path.exists(dataset_cache_file):
    print("Loading dataset from cache...")
    with open(dataset_cache_file, 'rb') as f:
        processed_dataset = pickle.load(f)
else:
    print("Processing dataset...")
    dataset = load_dataset(dataset_name)
    processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names)
    with open(dataset_cache_file, 'wb') as f:
        pickle.dump(processed_dataset, f)

print(f"Processed dataset size: {len(processed_dataset)}")

# Training function
def train_step(state, batch, rng):
    def compute_loss(params, pixel_values, rng):
        print("pixel_values dtype:", pixel_values.dtype)
        print("params dtypes:", jax.tree_map(lambda x: x.dtype, params))
        print("rng dtype:", rng.dtype)
        
        # Ensure pixel_values are float32
        pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
        
        # Encode images to latent space
        latents = pipeline.vae.apply(
            {"params": params["vae"]},
            pixel_values,
            method=pipeline.vae.encode
        ).latent_dist.sample(rng)
        latents = latents * jnp.float32(0.18215)

        # Generate random noise
        noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32)
        
        # Sample random timesteps
        timesteps = jax.random.randint(
            rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
        )
        
        print("timesteps dtype:", timesteps.dtype)
        print("latents dtype:", latents.dtype)
        print("noise dtype:", noise.dtype)
        
        # Add noise to latents
        noisy_latents = pipeline.scheduler.add_noise(
            pipeline.scheduler.create_state(),
            original_samples=latents,
            noise=noise,
            timesteps=timesteps
        )
        
        # Generate random encoder hidden states (simulating text embeddings)
        encoder_hidden_states = jax.random.normal(
            rng, 
            (latents.shape[0], pipeline.text_encoder.config.hidden_size),
            dtype=jnp.float32
        )
        
        # Predict noise
        model_output = state.apply_fn(
            {'params': params["unet"]},
            noisy_latents,
            timesteps,
            encoder_hidden_states=encoder_hidden_states,
            train=True,
        )
        
        # Compute loss
        return jnp.mean((model_output - noise) ** 2)

    grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True)
    rng, step_rng = jax.random.split(rng)
    
    grads = grad_fn(state.params, batch["pixel_values"], step_rng)
    loss = compute_loss(state.params, batch["pixel_values"], step_rng)
    state = state.apply_gradients(grads=grads)
    return state, loss

# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
float32_params = jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype != jnp.int32 else x, params)
state = train_state.TrainState.create(
    apply_fn=unet.__call__,
    params=float32_params,
    tx=optimizer,
)

# Training loop
num_epochs = 3
batch_size = 1
rng = jax.random.PRNGKey(0)

for epoch in range(num_epochs):
    epoch_loss = 0
    num_batches = 0
    for batch in tqdm(processed_dataset.batch(batch_size)):
        batch['pixel_values'] = jnp.array(batch['pixel_values'], dtype=jnp.float32)
        rng, step_rng = jax.random.split(rng)
        state, loss = train_step(state, batch, step_rng)
        epoch_loss += loss
        num_batches += 1
        
        if num_batches % 10 == 0:
            jax.clear_caches()
    
    avg_loss = epoch_loss / num_batches
    print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}")
    jax.clear_caches()

# Save the fine-tuned model
output_dir = "/tmp/montevideo_fine_tuned_model"
os.makedirs(output_dir, exist_ok=True)
unet.save_pretrained(output_dir, params=state.params["unet"])

print(f"Model saved to {output_dir}")