File size: 9,223 Bytes
de0db89 bd20ad9 35bc545 acc7f4b 920c999 de0db89 77248af de0db89 1f8900f de0db89 920c999 de0db89 77248af de0db89 acc7f4b de0db89 4434e29 920c999 cc5a61c de0db89 77248af de0db89 77248af de0db89 77248af 920c999 77248af cc5a61c 77248af cc5a61c 649234d bd20ad9 de0db89 920c999 cc5a61c acc7f4b 571b479 7cbe1c1 35bc545 571b479 35bc545 7cbe1c1 571b479 7cbe1c1 acc7f4b 1f8900f cc5a61c 1f8900f 7cbe1c1 acc7f4b cf50961 7cbe1c1 5fadcb1 cc5a61c 5fadcb1 1f8900f 7cbe1c1 bd20ad9 cc5a61c 571b479 bd20ad9 7b46a28 7cbe1c1 571b479 35bc545 cc5a61c 5fadcb1 1f8900f 7cbe1c1 cc5a61c 1f8900f 571b479 cc5a61c 571b479 cc5a61c 1f8900f 8835824 acc7f4b 8835824 acc7f4b 8835824 2cee4c3 bec6160 2cee4c3 00f4326 2cee4c3 00f4326 2cee4c3 00f4326 2cee4c3 00f4326 2cee4c3 00f4326 2cee4c3 00f4326 2cee4c3 00f4326 2cee4c3 00f4326 2cee4c3 7cbe1c1 2cee4c3 1f8900f 4434e29 1f8900f bd20ad9 1f8900f bd20ad9 35bc545 8835824 1f8900f bd20ad9 1f8900f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import jax
import jax.numpy as jnp
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np
import gc
from diffusers.schedulers import PNDMScheduler
class CustomPNDMScheduler(PNDMScheduler):
def add_noise(self, state, original_samples, noise, timesteps):
# Explicitly cast timesteps to int32
timesteps = timesteps.astype(jnp.int32)
return super().add_noise(state, original_samples, noise, timesteps)
# Force JAX to use CPU
jax.config.update('jax_platform_name', 'cpu')
print("Using CPU for computations")
# Set up cache directories
cache_dir = "/tmp/huggingface_cache"
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)
print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")
# Function to load or download the model
def get_model(model_id, revision):
model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
print(f"Model cache file: {model_cache_file}")
if os.path.exists(model_cache_file):
print("Loading model from cache...")
with open(model_cache_file, 'rb') as f:
return pickle.load(f)
else:
print("Downloading model...")
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
model_id,
revision=revision,
dtype=jnp.float32, # Use float32 for CPU
)
with open(model_cache_file, 'wb') as f:
pickle.dump((pipeline, params), f)
return pipeline, params
# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")
# Extract UNet from pipeline
unet = pipeline.unet
# After loading the pipeline
custom_scheduler = CustomPNDMScheduler.from_config(pipeline.scheduler.config)
pipeline.scheduler = custom_scheduler
# Load and preprocess your dataset
def preprocess_images(examples):
def process_image(image):
if isinstance(image, str):
image = Image.open(image)
if not isinstance(image, Image.Image):
raise ValueError(f"Unexpected image type: {type(image)}")
image = image.convert("RGB").resize((512, 512))
image = np.array(image).astype(np.float32) / 255.0
return image.transpose(2, 0, 1)
return {"pixel_values": [process_image(img) for img in examples["image"]]}
# Load dataset from Hugging Face
dataset_name = "uruguayai/montevideo"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")
print(f"Dataset name: {dataset_name}")
print(f"Dataset cache file: {dataset_cache_file}")
try:
if os.path.exists(dataset_cache_file):
print("Loading dataset from cache...")
with open(dataset_cache_file, 'rb') as f:
processed_dataset = pickle.load(f)
else:
print("Loading dataset from Hugging Face...")
dataset = load_dataset(dataset_name, split="train[:500]") # Load only first 500 samples
print("Processing dataset...")
processed_dataset = dataset.map(preprocess_images, batched=True, remove_columns=dataset.column_names)
with open(dataset_cache_file, 'wb') as f:
pickle.dump(processed_dataset, f)
print(f"Processed dataset size: {len(processed_dataset)}")
except Exception as e:
print(f"Error loading or processing dataset: {str(e)}")
raise ValueError("Unable to load or process the dataset.")
# Function to clear JIT cache
def clear_jit_cache():
jax.clear_caches()
gc.collect()
# Training function
def train_step(state, batch, rng):
def compute_loss(params, pixel_values, rng):
print("pixel_values dtype:", pixel_values.dtype)
print("params dtypes:", jax.tree_map(lambda x: x.dtype, params))
print("rng dtype:", rng.dtype)
# Ensure pixel_values are float32
pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
# Encode images to latent space
latents = pipeline.vae.apply(
{"params": params["vae"]},
pixel_values,
method=pipeline.vae.encode
).latent_dist.sample(rng)
latents = latents * jnp.float32(0.18215)
# Generate random noise
noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32)
# Sample random timesteps
timesteps = jax.random.randint(
rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
)
print("timesteps dtype:", timesteps.dtype)
print("latents dtype:", latents.dtype)
print("noise dtype:", noise.dtype)
# Add noise to latents
noisy_latents = pipeline.scheduler.add_noise(
pipeline.scheduler.create_state(),
original_samples=latents,
noise=noise,
timesteps=timesteps
)
# Generate random encoder hidden states (simulating text embeddings)
encoder_hidden_states = jax.random.normal(
rng,
(latents.shape[0], pipeline.text_encoder.config.hidden_size),
dtype=jnp.float32
)
# Predict noise
model_output = state.apply_fn(
{'params': params["unet"]},
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
train=True,
)
# Compute loss
return jnp.mean((model_output - noise) ** 2)
grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True)
rng, step_rng = jax.random.split(rng)
grads = grad_fn(state.params, batch["pixel_values"], step_rng)
loss = compute_loss(state.params, batch["pixel_values"], step_rng)
state = state.apply_gradients(grads=grads)
return state, loss
# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
float32_params = jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype != jnp.int32 else x, params)
state = train_state.TrainState.create(
apply_fn=unet.__call__,
params=float32_params,
tx=optimizer,
)
# Modify the train_step function
def train_step(state, batch, rng):
def compute_loss(params, pixel_values, rng):
# Ensure pixel_values are float32
pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
# Encode images to latent space
latents = pipeline.vae.apply(
{"params": params["vae"]},
pixel_values,
method=pipeline.vae.encode
).latent_dist.sample(rng)
latents = latents * jnp.float32(0.18215)
# Generate random noise
noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32)
# Sample random timesteps
timesteps = jax.random.randint(
rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
)
timesteps = jnp.array(timesteps, dtype=jnp.float32)
# Add noise to latents
noisy_latents = pipeline.scheduler.add_noise(
pipeline.scheduler.create_state(),
original_samples=latents,
noise=noise,
timesteps=timesteps
)
# Generate random encoder hidden states (simulating text embeddings)
encoder_hidden_states = jax.random.normal(
rng,
(latents.shape[0], pipeline.text_encoder.config.hidden_size),
dtype=jnp.float32
)
# Predict noise
model_output = state.apply_fn(
{'params': params["unet"]},
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
train=True,
)
# Compute loss
return jnp.mean((model_output - noise) ** 2)
grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True)
rng, step_rng = jax.random.split(rng)
grads = grad_fn(state.params, batch["pixel_values"], step_rng)
loss = compute_loss(state.params, batch["pixel_values"], step_rng)
state = state.apply_gradients(grads=grads)
return state, loss
# Training loop (remains the same)
num_epochs = 3
batch_size = 1
rng = jax.random.PRNGKey(0)
for epoch in range(num_epochs):
epoch_loss = 0
num_batches = 0
for batch in tqdm(processed_dataset.batch(batch_size)):
batch['pixel_values'] = jnp.array(batch['pixel_values'], dtype=jnp.float32)
rng, step_rng = jax.random.split(rng)
state, loss = train_step(state, batch, step_rng)
epoch_loss += loss
num_batches += 1
if num_batches % 10 == 0:
clear_jit_cache()
avg_loss = epoch_loss / num_batches
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}")
clear_jit_cache()
# Save the fine-tuned model
output_dir = "/tmp/montevideo_fine_tuned_model"
os.makedirs(output_dir, exist_ok=True)
unet.save_pretrained(output_dir, params=state.params["unet"])
print(f"Model saved to {output_dir}") |