File size: 9,223 Bytes
de0db89
 
 
 
 
 
 
 
 
 
 
bd20ad9
35bc545
acc7f4b
 
 
 
 
 
 
 
 
 
920c999
 
 
 
 
de0db89
77248af
de0db89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8900f
de0db89
 
920c999
de0db89
 
 
 
 
 
 
 
 
77248af
de0db89
 
acc7f4b
 
 
 
 
 
 
de0db89
 
 
 
 
 
 
4434e29
920c999
cc5a61c
de0db89
 
 
77248af
 
de0db89
 
77248af
de0db89
 
77248af
 
 
 
 
 
 
920c999
77248af
cc5a61c
77248af
 
 
 
 
 
 
cc5a61c
649234d
bd20ad9
 
 
 
de0db89
920c999
cc5a61c
 
acc7f4b
 
 
 
571b479
 
 
7cbe1c1
35bc545
 
 
 
 
571b479
35bc545
7cbe1c1
571b479
7cbe1c1
acc7f4b
1f8900f
cc5a61c
1f8900f
7cbe1c1
acc7f4b
 
 
cf50961
7cbe1c1
5fadcb1
cc5a61c
5fadcb1
1f8900f
 
 
 
7cbe1c1
bd20ad9
cc5a61c
571b479
 
bd20ad9
7b46a28
7cbe1c1
571b479
35bc545
cc5a61c
 
5fadcb1
1f8900f
 
 
7cbe1c1
cc5a61c
1f8900f
571b479
cc5a61c
571b479
 
 
cc5a61c
 
1f8900f
8835824
 
 
acc7f4b
8835824
acc7f4b
 
8835824
 
 
2cee4c3
bec6160
2cee4c3
00f4326
 
 
2cee4c3
 
 
 
 
 
00f4326
2cee4c3
 
00f4326
2cee4c3
 
 
 
 
00f4326
2cee4c3
 
 
 
 
 
 
 
 
 
 
 
00f4326
 
2cee4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
00f4326
2cee4c3
00f4326
 
 
2cee4c3
 
 
00f4326
 
2cee4c3
7cbe1c1
2cee4c3
1f8900f
 
 
 
 
 
4434e29
1f8900f
 
 
 
bd20ad9
 
 
 
1f8900f
 
bd20ad9
35bc545
8835824
1f8900f
 
 
bd20ad9
1f8900f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import jax
import jax.numpy as jnp
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np
import gc


from diffusers.schedulers import PNDMScheduler

class CustomPNDMScheduler(PNDMScheduler):
    def add_noise(self, state, original_samples, noise, timesteps):
        # Explicitly cast timesteps to int32
        timesteps = timesteps.astype(jnp.int32)
        return super().add_noise(state, original_samples, noise, timesteps)

        
# Force JAX to use CPU
jax.config.update('jax_platform_name', 'cpu')

print("Using CPU for computations")

# Set up cache directories
cache_dir = "/tmp/huggingface_cache"
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)

print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")

# Function to load or download the model
def get_model(model_id, revision):
    model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
    print(f"Model cache file: {model_cache_file}")
    if os.path.exists(model_cache_file):
        print("Loading model from cache...")
        with open(model_cache_file, 'rb') as f:
            return pickle.load(f)
    else:
        print("Downloading model...")
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            model_id, 
            revision=revision,
            dtype=jnp.float32,  # Use float32 for CPU
        )
        with open(model_cache_file, 'wb') as f:
            pickle.dump((pipeline, params), f)
        return pipeline, params

# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")

# Extract UNet from pipeline
unet = pipeline.unet



# After loading the pipeline
custom_scheduler = CustomPNDMScheduler.from_config(pipeline.scheduler.config)
pipeline.scheduler = custom_scheduler


# Load and preprocess your dataset
def preprocess_images(examples):
    def process_image(image):
        if isinstance(image, str):
            image = Image.open(image)
        if not isinstance(image, Image.Image):
            raise ValueError(f"Unexpected image type: {type(image)}")
        image = image.convert("RGB").resize((512, 512))
        image = np.array(image).astype(np.float32) / 255.0
        return image.transpose(2, 0, 1)

    return {"pixel_values": [process_image(img) for img in examples["image"]]}

# Load dataset from Hugging Face
dataset_name = "uruguayai/montevideo"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")

print(f"Dataset name: {dataset_name}")
print(f"Dataset cache file: {dataset_cache_file}")

try:
    if os.path.exists(dataset_cache_file):
        print("Loading dataset from cache...")
        with open(dataset_cache_file, 'rb') as f:
            processed_dataset = pickle.load(f)
    else:
        print("Loading dataset from Hugging Face...")
        dataset = load_dataset(dataset_name, split="train[:500]")  # Load only first 500 samples
        print("Processing dataset...")
        processed_dataset = dataset.map(preprocess_images, batched=True, remove_columns=dataset.column_names)
        with open(dataset_cache_file, 'wb') as f:
            pickle.dump(processed_dataset, f)

    print(f"Processed dataset size: {len(processed_dataset)}")

except Exception as e:
    print(f"Error loading or processing dataset: {str(e)}")
    raise ValueError("Unable to load or process the dataset.")

# Function to clear JIT cache
def clear_jit_cache():
    jax.clear_caches()
    gc.collect()

# Training function
def train_step(state, batch, rng):
    def compute_loss(params, pixel_values, rng):
        print("pixel_values dtype:", pixel_values.dtype)
        print("params dtypes:", jax.tree_map(lambda x: x.dtype, params))
        print("rng dtype:", rng.dtype)
        
        # Ensure pixel_values are float32
        pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
        
        # Encode images to latent space
        latents = pipeline.vae.apply(
            {"params": params["vae"]},
            pixel_values,
            method=pipeline.vae.encode
        ).latent_dist.sample(rng)
        latents = latents * jnp.float32(0.18215)

        # Generate random noise
        noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32)
        
        # Sample random timesteps
        timesteps = jax.random.randint(
            rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
        )
        
        print("timesteps dtype:", timesteps.dtype)
        print("latents dtype:", latents.dtype)
        print("noise dtype:", noise.dtype)
        
        # Add noise to latents
        noisy_latents = pipeline.scheduler.add_noise(
            pipeline.scheduler.create_state(),
            original_samples=latents,
            noise=noise,
            timesteps=timesteps
        )
        
        # Generate random encoder hidden states (simulating text embeddings)
        encoder_hidden_states = jax.random.normal(
            rng, 
            (latents.shape[0], pipeline.text_encoder.config.hidden_size),
            dtype=jnp.float32
        )
        
        # Predict noise
        model_output = state.apply_fn(
            {'params': params["unet"]},
            noisy_latents,
            timesteps,
            encoder_hidden_states=encoder_hidden_states,
            train=True,
        )
        
        # Compute loss
        return jnp.mean((model_output - noise) ** 2)

    grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True)
    rng, step_rng = jax.random.split(rng)
    
    grads = grad_fn(state.params, batch["pixel_values"], step_rng)
    loss = compute_loss(state.params, batch["pixel_values"], step_rng)
    state = state.apply_gradients(grads=grads)
    return state, loss

# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
float32_params = jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype != jnp.int32 else x, params)
state = train_state.TrainState.create(
    apply_fn=unet.__call__,
    params=float32_params,
    tx=optimizer,
)

# Modify the train_step function
def train_step(state, batch, rng):
    def compute_loss(params, pixel_values, rng):
        # Ensure pixel_values are float32
        pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
        
        # Encode images to latent space
        latents = pipeline.vae.apply(
            {"params": params["vae"]},
            pixel_values,
            method=pipeline.vae.encode
        ).latent_dist.sample(rng)
        latents = latents * jnp.float32(0.18215)

        # Generate random noise
        noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32)
        
        # Sample random timesteps
        timesteps = jax.random.randint(
            rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
        )
        timesteps = jnp.array(timesteps, dtype=jnp.float32)
        
        # Add noise to latents
        noisy_latents = pipeline.scheduler.add_noise(
            pipeline.scheduler.create_state(),
            original_samples=latents,
            noise=noise,
            timesteps=timesteps
        )
        
        # Generate random encoder hidden states (simulating text embeddings)
        encoder_hidden_states = jax.random.normal(
            rng, 
            (latents.shape[0], pipeline.text_encoder.config.hidden_size),
            dtype=jnp.float32
        )
        
        # Predict noise
        model_output = state.apply_fn(
            {'params': params["unet"]},
            noisy_latents,
            timesteps,
            encoder_hidden_states=encoder_hidden_states,
            train=True,
        )
        
        # Compute loss
        return jnp.mean((model_output - noise) ** 2)

    grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True)
    rng, step_rng = jax.random.split(rng)
    
    grads = grad_fn(state.params, batch["pixel_values"], step_rng)
    loss = compute_loss(state.params, batch["pixel_values"], step_rng)
    state = state.apply_gradients(grads=grads)
    return state, loss



# Training loop (remains the same)
num_epochs = 3
batch_size = 1
rng = jax.random.PRNGKey(0)

for epoch in range(num_epochs):
    epoch_loss = 0
    num_batches = 0
    for batch in tqdm(processed_dataset.batch(batch_size)):
        batch['pixel_values'] = jnp.array(batch['pixel_values'], dtype=jnp.float32)
        rng, step_rng = jax.random.split(rng)
        state, loss = train_step(state, batch, step_rng)
        epoch_loss += loss
        num_batches += 1
        
        if num_batches % 10 == 0:
            clear_jit_cache()
    
    avg_loss = epoch_loss / num_batches
    print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}")
    clear_jit_cache()

    
# Save the fine-tuned model
output_dir = "/tmp/montevideo_fine_tuned_model"
os.makedirs(output_dir, exist_ok=True)
unet.save_pretrained(output_dir, params=state.params["unet"])

print(f"Model saved to {output_dir}")