File size: 8,675 Bytes
de0db89 bd20ad9 35bc545 bd20ad9 de0db89 77248af de0db89 1f8900f de0db89 bd20ad9 de0db89 77248af de0db89 762155a bd20ad9 06b9137 762155a de0db89 77248af de0db89 77248af de0db89 77248af de0db89 77248af de0db89 77248af 649234d bd20ad9 de0db89 bd20ad9 1f8900f 5fadcb1 35bc545 bd20ad9 35bc545 1f8900f 7b46a28 bd20ad9 1f8900f 6f411d1 5fadcb1 6f411d1 5fadcb1 1f8900f 7b46a28 bd20ad9 7b46a28 1f8900f 35bc545 bd20ad9 5fadcb1 1f8900f bd20ad9 1f8900f bd20ad9 1f8900f 35bc545 1f8900f bd20ad9 1f8900f 06b9137 bd20ad9 1f8900f bd20ad9 1f8900f bd20ad9 35bc545 1f8900f bd20ad9 1f8900f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np
import gc
# Set default dtype to float16
jax.config.update("jax_default_dtype", "float16")
# Set up cache directories
cache_dir = "/tmp/huggingface_cache"
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)
print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")
# Function to load or download the model
def get_model(model_id, revision):
model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
print(f"Model cache file: {model_cache_file}")
if os.path.exists(model_cache_file):
print("Loading model from cache...")
with open(model_cache_file, 'rb') as f:
return pickle.load(f)
else:
print("Downloading model...")
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
model_id,
revision=revision,
dtype=jnp.float16,
)
with open(model_cache_file, 'wb') as f:
pickle.dump((pipeline, params), f)
return pipeline, params
# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")
# Extract UNet from pipeline
unet = pipeline.unet
# Load and preprocess your dataset
def preprocess_images(examples):
def process_image(image):
if isinstance(image, str):
image = Image.open(image)
if not isinstance(image, Image.Image):
raise ValueError(f"Unexpected image type: {type(image)}")
# Resize and convert to RGB
image = image.convert("RGB").resize((512, 512))
# Convert to numpy array and normalize
image = np.array(image).astype(np.float16) / 255.0
# Ensure the image has the shape (3, height, width)
return image.transpose(2, 0, 1) # Change to channel-first format
return {"pixel_values": [process_image(img) for img in examples["image"]]}
# Load dataset from Hugging Face
dataset_name = "uruguayai/montevideo"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")
print(f"Dataset name: {dataset_name}")
print(f"Dataset cache file: {dataset_cache_file}")
try:
if os.path.exists(dataset_cache_file):
print("Loading dataset from cache...")
with open(dataset_cache_file, 'rb') as f:
processed_dataset = pickle.load(f)
else:
print("Loading dataset from Hugging Face...")
dataset = load_dataset(dataset_name)
print("Dataset structure:", dataset)
print("Available splits:", dataset.keys())
if "train" not in dataset:
raise ValueError("The dataset does not contain a 'train' split.")
print("Processing dataset...")
processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names)
with open(dataset_cache_file, 'wb') as f:
pickle.dump(processed_dataset, f)
print(f"Processed dataset size: {len(processed_dataset)}")
except Exception as e:
print(f"Error loading or processing dataset: {str(e)}")
print("Attempting to find dataset...")
# List contents of current directory and parent directories
print("Current directory contents:")
print(os.listdir('.'))
print("Parent directory contents:")
print(os.listdir('..'))
print("Root directory contents:")
print(os.listdir('/'))
# Try to find any directory that might contain the dataset
for root, dirs, files in os.walk('/'):
if 'montevideo' in dirs:
print(f"Found 'montevideo' directory at: {os.path.join(root, 'montevideo')}")
print(f"Contents: {os.listdir(os.path.join(root, 'montevideo'))}")
raise ValueError("Unable to locate or load the dataset. Please check the dataset path and permissions.")
# Function to clear JIT cache
def clear_jit_cache():
jax.clear_caches()
gc.collect()
# Training function with gradient accumulation
def train_step(state, batch, rng, grad_accumulation_steps=8):
def compute_loss(params, batch_slice, rng):
# Convert batch slice to JAX array
pixel_values = jnp.array(batch_slice["pixel_values"], dtype=jnp.float16)
batch_size = pixel_values.shape[0]
# Encode images to latent space
latents = pipeline.vae.apply(
{"params": params["vae"]},
pixel_values,
method=pipeline.vae.encode
).latent_dist.sample(rng)
latents = latents * jnp.float16(0.18215) # scaling factor
# Generate random noise
noise_rng, timestep_rng, latents_rng = jax.random.split(rng, 3)
noise = jax.random.normal(noise_rng, latents.shape, dtype=jnp.float16)
# Sample random timesteps
timesteps = jax.random.randint(
timestep_rng, (batch_size,), 0, pipeline.scheduler.config.num_train_timesteps
)
# Create scheduler state
scheduler_state = pipeline.scheduler.create_state()
# Add noise to latents using the scheduler
noisy_latents = pipeline.scheduler.add_noise(
scheduler_state,
original_samples=latents,
noise=noise,
timesteps=timesteps
)
# Generate random latents for text encoder
encoder_hidden_states = jax.random.normal(
latents_rng,
(batch_size, pipeline.text_encoder.config.hidden_size),
dtype=jnp.float16
)
# Predict noise
model_output = state.apply_fn.apply(
{'params': params["unet"]},
jnp.array(noisy_latents, dtype=jnp.float16),
jnp.array(timesteps, dtype=jnp.float16),
encoder_hidden_states=encoder_hidden_states,
train=True,
)
# Compute loss
loss = jnp.mean((model_output - noise) ** 2)
return loss
grad_fn = jax.value_and_grad(compute_loss)
# Split the batch into smaller chunks
batch_size = len(batch['pixel_values'])
chunk_size = batch_size // grad_accumulation_steps
# Initialize accumulated gradients
acc_grads = jax.tree_map(jnp.zeros_like, state.params)
acc_loss = jnp.float16(0.0)
for i in range(grad_accumulation_steps):
start_idx = i * chunk_size
end_idx = start_idx + chunk_size if i < grad_accumulation_steps - 1 else batch_size
batch_slice = {
'pixel_values': batch['pixel_values'][start_idx:end_idx]
}
rng, step_rng = jax.random.split(rng)
loss, grads = grad_fn(state.params, batch_slice, step_rng)
# Accumulate gradients and loss
acc_grads = jax.tree_map(lambda acc, g: acc + g / grad_accumulation_steps, acc_grads, grads)
acc_loss += loss / grad_accumulation_steps
# Update state with accumulated gradients
state = state.apply_gradients(grads=acc_grads)
return state, acc_loss
# Initialize training state
learning_rate = jnp.float16(1e-5)
optimizer = optax.adam(learning_rate)
state = train_state.TrainState.create(
apply_fn=unet,
params={"unet": params["unet"], "vae": params["vae"]}, # Include both UNet and VAE params
tx=optimizer,
)
# Training loop
num_epochs = 10
batch_size = 2 # Reduced batch size
rng = jax.random.PRNGKey(0)
for epoch in range(num_epochs):
epoch_loss = 0
num_batches = 0
for batch in tqdm(processed_dataset.batch(batch_size)):
# Convert the list of pixel values to a numpy array for each batch
batch['pixel_values'] = np.array(batch['pixel_values'], dtype=np.float16)
rng, step_rng = jax.random.split(rng)
state, loss = train_step(state, batch, step_rng)
epoch_loss += loss
num_batches += 1
# Clear JIT cache every 10 batches
if num_batches % 10 == 0:
clear_jit_cache()
avg_loss = epoch_loss / num_batches
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}")
# Clear JIT cache after each epoch
clear_jit_cache()
# Save the fine-tuned model
output_dir = "/tmp/montevideo_fine_tuned_model"
os.makedirs(output_dir, exist_ok=True)
unet.save_pretrained(output_dir, params=state.params["unet"])
print(f"Model saved to {output_dir}") |