File size: 5,815 Bytes
de0db89
 
 
 
 
 
 
 
 
 
 
 
bd20ad9
35bc545
de0db89
77248af
de0db89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8900f
de0db89
 
bd20ad9
de0db89
 
 
 
 
 
 
 
 
77248af
de0db89
 
 
 
 
 
 
 
 
cc5a61c
bd20ad9
cc5a61c
de0db89
 
 
77248af
 
de0db89
 
77248af
de0db89
 
77248af
 
 
 
 
 
 
cc5a61c
77248af
cc5a61c
77248af
 
 
 
 
 
 
cc5a61c
649234d
bd20ad9
 
 
 
de0db89
bd20ad9
cc5a61c
 
 
35bc545
 
 
 
 
cc5a61c
35bc545
cc5a61c
1f8900f
cc5a61c
1f8900f
5fadcb1
cc5a61c
5fadcb1
1f8900f
 
 
 
bd20ad9
cc5a61c
 
bd20ad9
 
7b46a28
1f8900f
35bc545
cc5a61c
 
5fadcb1
1f8900f
 
 
cc5a61c
1f8900f
bd20ad9
cc5a61c
 
 
 
1f8900f
 
bd20ad9
1f8900f
 
 
cc5a61c
1f8900f
 
 
 
cc5a61c
 
1f8900f
 
 
 
 
 
cc5a61c
1f8900f
 
 
 
bd20ad9
 
 
 
1f8900f
 
bd20ad9
35bc545
1f8900f
 
 
bd20ad9
1f8900f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np
import gc

# Set up cache directories
cache_dir = "/tmp/huggingface_cache"
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)

print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")

# Function to load or download the model
def get_model(model_id, revision):
    model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
    print(f"Model cache file: {model_cache_file}")
    if os.path.exists(model_cache_file):
        print("Loading model from cache...")
        with open(model_cache_file, 'rb') as f:
            return pickle.load(f)
    else:
        print("Downloading model...")
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            model_id, 
            revision=revision,
            dtype=jnp.float16,
        )
        with open(model_cache_file, 'wb') as f:
            pickle.dump((pipeline, params), f)
        return pipeline, params

# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")

# Extract UNet from pipeline
unet = pipeline.unet

# Load and preprocess your dataset
def preprocess_images(examples):
    def process_image(image):
        if isinstance(image, str):
            image = Image.open(image)
        if not isinstance(image, Image.Image):
            raise ValueError(f"Unexpected image type: {type(image)}")
        image = image.convert("RGB").resize((256, 256))  # Reduced image size
        image = np.array(image).astype(np.float16) / 255.0
        return image.transpose(2, 0, 1)

    return {"pixel_values": [process_image(img) for img in examples["image"]]}

# Load dataset from Hugging Face
dataset_name = "uruguayai/montevideo"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")

print(f"Dataset name: {dataset_name}")
print(f"Dataset cache file: {dataset_cache_file}")

try:
    if os.path.exists(dataset_cache_file):
        print("Loading dataset from cache...")
        with open(dataset_cache_file, 'rb') as f:
            processed_dataset = pickle.load(f)
    else:
        print("Loading dataset from Hugging Face...")
        dataset = load_dataset(dataset_name, split="train[:1000]")  # Load only first 1000 samples
        print("Processing dataset...")
        processed_dataset = dataset.map(preprocess_images, batched=True, remove_columns=dataset.column_names)
        with open(dataset_cache_file, 'wb') as f:
            pickle.dump(processed_dataset, f)

    print(f"Processed dataset size: {len(processed_dataset)}")

except Exception as e:
    print(f"Error loading or processing dataset: {str(e)}")
    raise ValueError("Unable to load or process the dataset.")

# Function to clear JIT cache
def clear_jit_cache():
    jax.clear_caches()
    gc.collect()

# Training function with gradient accumulation
@jax.jit
def train_step(state, batch, rng):
    def compute_loss(params, pixel_values, rng):
        latents = pipeline.vae.apply(
            {"params": params["vae"]},
            pixel_values,
            method=pipeline.vae.encode
        ).latent_dist.sample(rng)
        latents = latents * jnp.float16(0.18215)

        noise = jax.random.normal(rng, latents.shape, dtype=jnp.float16)
        timesteps = jax.random.randint(
            rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
        )
        noisy_latents = pipeline.scheduler.add_noise(
            pipeline.scheduler.create_state(),
            original_samples=latents,
            noise=noise,
            timesteps=timesteps
        )
        
        encoder_hidden_states = jax.random.normal(
            rng, 
            (latents.shape[0], pipeline.text_encoder.config.hidden_size),
            dtype=jnp.float16
        )
        
        model_output = state.apply_fn.apply(
            {'params': params["unet"]},
            noisy_latents,
            timesteps,
            encoder_hidden_states=encoder_hidden_states,
            train=True,
        )
        
        return jnp.mean((model_output - noise) ** 2)

    grad_fn = jax.value_and_grad(compute_loss)
    rng, step_rng = jax.random.split(rng)
    loss, grads = grad_fn(state.params, batch["pixel_values"], step_rng)
    state = state.apply_gradients(grads=grads)
    return state, loss

# Initialize training state
learning_rate = jnp.float16(1e-5)
optimizer = optax.adam(learning_rate)
state = train_state.TrainState.create(
    apply_fn=unet,
    params={"unet": params["unet"], "vae": params["vae"]},
    tx=optimizer,
)

# Training loop
num_epochs = 5  # Reduced number of epochs
batch_size = 4
rng = jax.random.PRNGKey(0)

for epoch in range(num_epochs):
    epoch_loss = 0
    num_batches = 0
    for batch in tqdm(processed_dataset.batch(batch_size)):
        batch['pixel_values'] = jnp.array(batch['pixel_values'], dtype=jnp.float16)
        rng, step_rng = jax.random.split(rng)
        state, loss = train_step(state, batch, step_rng)
        epoch_loss += loss
        num_batches += 1
        
        if num_batches % 10 == 0:
            clear_jit_cache()
    
    avg_loss = epoch_loss / num_batches
    print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}")
    clear_jit_cache()

# Save the fine-tuned model
output_dir = "/tmp/montevideo_fine_tuned_model"
os.makedirs(output_dir, exist_ok=True)
unet.save_pretrained(output_dir, params=state.params["unet"])

print(f"Model saved to {output_dir}")