File size: 5,679 Bytes
de0db89
 
3518b5f
de0db89
 
 
3518b5f
de0db89
 
 
 
 
 
35bc545
3518b5f
 
acc7f4b
 
 
 
de0db89
77248af
de0db89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8900f
de0db89
 
3518b5f
de0db89
 
 
 
 
 
 
 
 
3518b5f
 
acc7f4b
 
3518b5f
 
acc7f4b
de0db89
 
 
 
 
 
 
4434e29
920c999
cc5a61c
de0db89
 
 
77248af
 
de0db89
 
77248af
de0db89
 
3518b5f
 
 
 
 
 
 
 
 
 
649234d
3518b5f
de0db89
920c999
cc5a61c
 
acc7f4b
8e214b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a48f70
8e214b7
 
 
 
 
 
 
 
 
 
 
 
 
 
dacaf33
e9745d9
8e214b7
dacaf33
 
c8658d7
8e214b7
dacaf33
8e214b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9745d9
8e214b7
 
 
 
 
 
 
dacaf33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline
from diffusers.schedulers import FlaxPNDMScheduler
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np

# Custom Scheduler
class CustomFlaxPNDMScheduler(FlaxPNDMScheduler):
    def add_noise(self, state, original_samples, noise, timesteps):
        timesteps = timesteps.astype(jnp.int32)
        return super().add_noise(state, original_samples, noise, timesteps)

# Set up cache directories
cache_dir = "/tmp/huggingface_cache"
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)

print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")

# Function to load or download the model
def get_model(model_id, revision):
    model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
    print(f"Model cache file: {model_cache_file}")
    if os.path.exists(model_cache_file):
        print("Loading model from cache...")
        with open(model_cache_file, 'rb') as f:
            return pickle.load(f)
    else:
        print("Downloading model...")
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            model_id, 
            revision=revision,
            dtype=jnp.float32,
        )
        with open(model_cache_file, 'wb') as f:
            pickle.dump((pipeline, params), f)
        return pipeline, params

# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")

# Use custom scheduler
custom_scheduler = CustomFlaxPNDMScheduler.from_config(pipeline.scheduler.config)
pipeline.scheduler = custom_scheduler

# Extract UNet from pipeline
unet = pipeline.unet

# Load and preprocess your dataset
def preprocess_images(examples):
    def process_image(image):
        if isinstance(image, str):
            image = Image.open(image)
        if not isinstance(image, Image.Image):
            raise ValueError(f"Unexpected image type: {type(image)}")
        image = image.convert("RGB").resize((512, 512))
        image = np.array(image).astype(np.float32) / 255.0
        return image.transpose(2, 0, 1)

    return {"pixel_values": [process_image(img) for img in examples["image"]]}

# Load dataset from Hugging Face
dataset_name = "uruguayai/montevideo"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")

print(f"Dataset name: {dataset_name}")
print(f"Dataset cache file: {dataset_cache_file}")

if os.path.exists(dataset_cache_file):
    print("Loading dataset from cache...")
    with open(dataset_cache_file, 'rb') as f:
        processed_dataset = pickle.load(f)
else:
    print("Processing dataset...")
    dataset = load_dataset(dataset_name)
    processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names)
    with open(dataset_cache_file, 'wb') as f:
        pickle.dump(processed_dataset, f)

print(f"Processed dataset size: {len(processed_dataset)}")

# Training function
def train_step(state, batch, rng):
    def compute_loss(params, pixel_values, rng):
        print("pixel_values dtype:", pixel_values.dtype)
        print("params dtypes:", jax.tree_map(lambda x: x.dtype, params))
        print("rng dtype:", rng.dtype)
        
        pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
        
        latents = pipeline.vae.apply(
            {"params": params["vae"]},
            pixel_values,
            method=pipeline.vae.encode
        ).latent_dist.sample(rng)
        latents = latents * jnp.float32(0.18215)

        noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32)
        
        timesteps = jax.random.randint(
            rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
        )
        
        print("timesteps dtype:", timesteps.dtype)
        print("latents dtype:", latents.dtype)
        print("noise dtype:", noise.dtype)
        print("latents shape:", latents.shape)
        
        noisy_latents = pipeline.scheduler.add_noise(
            pipeline.scheduler.create_state(),
            original_samples=latents,
            noise=noise,
            timesteps=timesteps
        )
        
        encoder_hidden_states = jax.random.normal(
            rng, 
            (latents.shape[0], pipeline.text_encoder.config.hidden_size),
            dtype=jnp.float32
        )
        
        # Use the correct method to call the UNet
        model_output = unet.apply(
            {'params': params["unet"]},
            jnp.array(noisy_latents),
            jnp.array(timesteps, dtype=jnp.int32),
            encoder_hidden_states,
            train=True,
        ).sample
        
        return jnp.mean((model_output - noise) ** 2)

    grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True)
    rng, step_rng = jax.random.split(rng)
    
    grads = grad_fn(state.params, batch["pixel_values"], step_rng)
    loss = compute_loss(state.params, batch["pixel_values"], step_rng)
    state = state.apply_gradients(grads=grads)
    return state, loss

# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
float32_params = jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype != jnp.int32 else x, params)
state = train_state.TrainState.create(
    apply_fn=unet.apply,
    params=float32_params,
    tx=optimizer,
)

# Training loop
num_epochs = 3
batch_size = 1
rng = jax.random.PRNGKey(