File size: 3,189 Bytes
3fcc660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8239fe8
 
3fcc660
 
 
 
 
 
 
 
 
 
1e22887
3fcc660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import gradio as gr
import torch
import uuid
from PIL import Image
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from typing import Union, List
from loadimg import load_img  # Your helper to load from URL or file

torch.set_float32_matmul_precision("high")

# Load BiRefNet model
birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
birefnet.to(device)

# Image transformation
transform_image = transforms.Compose([
    transforms.Resize((1024, 1024)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

def process(image: Image.Image) -> Image.Image:
    image_size = image.size
    input_tensor = transform_image(image).unsqueeze(0).to(device)

    with torch.no_grad():
        preds = birefnet(input_tensor)[-1].sigmoid().cpu()

    pred = preds[0].squeeze()
    mask = transforms.ToPILImage()(pred).resize(image_size).convert("L")
    binary_mask = mask.point(lambda p: 255 if p > 127 else 0)

    white_bg = Image.new("RGB", image_size, (255, 255, 255))
    result = Image.composite(image, white_bg, binary_mask)
    return result

def handler(image=None, image_url=None, batch_urls=None) -> Union[str, List[str], None]:
    results = []

    try:
        # Single image upload
        if image is not None:
            image = image.convert("RGB")
            processed = process(image)
            filename = f"output_{uuid.uuid4().hex[:8]}.png"
            processed.save(filename)
            return filename

        # Single image from URL
        if image_url:
            im = load_img(image_url, output_type="pil").convert("RGB")
            processed = process(im)
            filename = f"output_{uuid.uuid4().hex[:8]}.png"
            processed.save(filename)
            return filename

        # Batch of URLs
        if batch_urls:
            urls = [u.strip() for u in batch_urls.split(",") if u.strip()]
            for url in urls:
                try:
                    im = load_img(url, output_type="pil").convert("RGB")
                    processed = process(im)
                    filename = f"output_{uuid.uuid4().hex[:8]}.png"
                    processed.save(filename)
                    results.append(filename)
                except Exception as e:
                    print(f"Error with {url}: {e}")
            return results if results else None

    except Exception as e:
        print("General error:", e)

    return None

# Interface
demo = gr.Interface(
    fn=handler,
    inputs=[
        gr.Image(label="Upload Image", type="pil", optional=True),
        gr.Textbox(label="Paste Image URL", optional=True),
        gr.Textbox(label="Comma-separated Image URLs (Batch)", optional=True),
    ],
    outputs=gr.File(label="Output File(s)", file_count="multiple"),
    title="Background Remover (White Fill)",
    description="Upload an image, paste a URL, or send a batch of URLs to remove the background and replace it with white.",
)

if __name__ == "__main__":
    demo.launch(show_error=True, mcp_server=True)