Spaces:
Runtime error
Runtime error
File size: 2,389 Bytes
cb43729 5896395 06ce79b 5896395 740be3d 5896395 c52bc1e 5896395 c52bc1e 5896395 c52bc1e 5896395 c52bc1e 5896395 c52bc1e 5896395 c52bc1e 5896395 c52bc1e 5896395 c52bc1e 5896395 06ce79b 05e48fe 06ce79b c0766d3 5896395 c0766d3 06ce79b c0766d3 06ce79b c0766d3 06ce79b 5896395 c52bc1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import spaces
import base64
import cv2
import numpy as np
import gradio as gr
from PIL import Image
from io import BytesIO
@spaces.GPU
def crop_face(base64_image):
try:
# Decode the base64 image
img_data = base64.b64decode(base64_image)
np_arr = np.frombuffer(img_data, np.uint8)
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if image is None:
return "Could not decode the image or no data in buffer"
# Load the pre-trained face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
# If no faces are detected, return message
if len(faces) == 0:
return "No faces found"
# Crop the first face found
x, y, w, h = faces[0]
face_crop = image[y:y+h, x:x+w]
# Encode the cropped face to base64
_, buffer = cv2.imencode('.jpg', face_crop)
face_base64 = base64.b64encode(buffer).decode('utf-8')
return face_base64
except Exception as e:
return f"An error occurred: {str(e)}"
def image_to_base64(image):
try:
# Prepare the buffer to save the image
buffered = BytesIO()
# Save the image to the buffer in JPEG format
image.save(buffered, format="JPEG")
# Encode the buffered image to Base64
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
except Exception as e:
return f"An error occurred: {str(e)}"
# Define the Gradio interfaces
face_crop_interface = gr.Interface(
fn=crop_face,
inputs="text",
outputs="text",
title="Face Cropper",
description="Input a base64 encoded image to get a base64 encoded cropped face."
)
base64_converter_interface = gr.Interface(
fn=image_to_base64,
inputs=gr.Image(),
outputs="text",
title="Image to Base64 Converter",
description="Upload an image to convert it to a Base64 encoded string."
)
if __name__ == "__main__":
gr.TabbedInterface([face_crop_interface, base64_converter_interface], ["Crop Face", "Convert to Base64"]).launch()
|