Spaces:
Runtime error
Runtime error
File size: 1,577 Bytes
5896395 1e3d31f 5896395 06ce79b 5896395 ee89b21 5896395 ee89b21 5896395 c52bc1e 1e3d31f c52bc1e 1e3d31f c52bc1e 1e3d31f c52bc1e 5896395 c52bc1e 1e3d31f 5896395 1e3d31f c52bc1e 5896395 c52bc1e 5896395 c52bc1e 5896395 c52bc1e 5896395 173ef02 e6911ff 3269a67 9f36b61 e6911ff 5896395 173ef02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import base64
import numpy as np
import cv2
import gradio as gr
from PIL import Image
from io import BytesIO
import spaces
@spaces.GPU
def crop_face(base64_image):
try:
# Decode the base64 image to an OpenCV format
img_data = base64.b64decode(base64_image)
np_arr = np.frombuffer(img_data, np.uint8)
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if image is None:
return "Image decoding failed. Check the input format."
# Load the pre-trained face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Convert the image to grayscale for face detection
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
if len(faces) == 0:
return "No faces detected in the image."
# Crop the first detected face
x, y, w, h = faces[0]
face_crop = image[y:y+h, x:x+w]
# Encode the cropped face to base64
_, buffer = cv2.imencode('.jpg', face_crop)
face_base64 = base64.b64encode(buffer).decode('utf-8')
return face_base64
except Exception as e:
return f"An error occurred: {str(e)}"
interface = gr.Interface(
fn=crop_face,
inputs=gr.Textbox(),
outputs="text",
title="Face Cropper",
description="Input a base64 encoded image to get a base64 encoded cropped face."
)
if __name__ == "__main__":
interface.launch(share=True) |