File size: 1,577 Bytes
5896395
 
1e3d31f
5896395
06ce79b
5896395
ee89b21
5896395
ee89b21
5896395
c52bc1e
1e3d31f
c52bc1e
 
 
 
 
1e3d31f
 
c52bc1e
 
 
1e3d31f
c52bc1e
 
5896395
c52bc1e
1e3d31f
5896395
1e3d31f
c52bc1e
 
5896395
c52bc1e
 
 
5896395
c52bc1e
5896395
c52bc1e
 
5896395
173ef02
e6911ff
3269a67
9f36b61
e6911ff
 
 
 
5896395
173ef02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import base64
import numpy as np
import cv2
import gradio as gr
from PIL import Image
from io import BytesIO
import spaces

@spaces.GPU
def crop_face(base64_image):
    try:
        # Decode the base64 image to an OpenCV format
        img_data = base64.b64decode(base64_image)
        np_arr = np.frombuffer(img_data, np.uint8)
        image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
        
        if image is None:
            return "Image decoding failed. Check the input format."

        # Load the pre-trained face detector
        face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

        # Convert the image to grayscale for face detection
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

        if len(faces) == 0:
            return "No faces detected in the image."

        # Crop the first detected face
        x, y, w, h = faces[0]
        face_crop = image[y:y+h, x:x+w]

        # Encode the cropped face to base64
        _, buffer = cv2.imencode('.jpg', face_crop)
        face_base64 = base64.b64encode(buffer).decode('utf-8')

        return face_base64

    except Exception as e:
        return f"An error occurred: {str(e)}"

interface = gr.Interface(
    fn=crop_face,
    inputs=gr.Textbox(),
    outputs="text",
    title="Face Cropper",
    description="Input a base64 encoded image to get a base64 encoded cropped face."
)

if __name__ == "__main__":
    interface.launch(share=True)