Spaces:
Sleeping
Sleeping
import spaces | |
import base64 | |
import numpy as np | |
import face_recognition | |
import gradio as gr | |
from io import BytesIO | |
def get_face_embedding(base64_image): | |
# Decode the base64 image | |
img_data = base64.b64decode(base64_image) | |
np_arr = np.frombuffer(img_data, np.uint8) | |
image = face_recognition.load_image_file(BytesIO(img_data)) | |
# Get the face encodings for all faces in the image | |
face_encodings = face_recognition.face_encodings(image) | |
# If no faces are detected, return an empty list | |
if not face_encodings: | |
return [] | |
# Return the first face encoding as a list | |
return face_encodings[0].tolist() | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=get_face_embedding, | |
inputs="text", | |
outputs="json", | |
title="Face Embedding Extractor", | |
description="Input a base64 encoded image to get a 128-dimensional face embedding vector. If no face is detected, an empty list is returned." | |
) | |
if __name__ == "__main__": | |
interface.launch(share=True) | |