face-embedding / app.py
user-agent's picture
Create app.py
b1a3fc6 verified
raw
history blame
1.03 kB
import spaces
import base64
import numpy as np
import face_recognition
import gradio as gr
from io import BytesIO
@spaces.GPU
def get_face_embedding(base64_image):
# Decode the base64 image
img_data = base64.b64decode(base64_image)
np_arr = np.frombuffer(img_data, np.uint8)
image = face_recognition.load_image_file(BytesIO(img_data))
# Get the face encodings for all faces in the image
face_encodings = face_recognition.face_encodings(image)
# If no faces are detected, return an empty list
if not face_encodings:
return []
# Return the first face encoding as a list
return face_encodings[0].tolist()
# Define the Gradio interface
interface = gr.Interface(
fn=get_face_embedding,
inputs="text",
outputs="json",
title="Face Embedding Extractor",
description="Input a base64 encoded image to get a 128-dimensional face embedding vector. If no face is detected, an empty list is returned."
)
if __name__ == "__main__":
interface.launch(share=True)