Spaces:
Sleeping
Sleeping
# app.py | |
import streamlit as st | |
from transformers import pipeline | |
# Load the summarization pipeline with the specified model | |
pipe = pipeline("summarization", model="Yihui/t5-small-text-summary-generation") | |
# Set the title of the app | |
st.title("Summary Generator") | |
#st.markdown("<p style='color:blue; font-size:20px;'>Developed by Usman</p>", unsafe_allow_html=True) | |
st.markdown("<p style='color:red; font-size:15px;'>Based on Hugging Face Model</p>", unsafe_allow_html=True) | |
st.markdown("<p style='color:blue; font-size:20px;'>Tokens min_length=30 & max_length=150</p>", unsafe_allow_html=True) | |
# Create a text area for user input | |
input_text = st.text_area("Enter the text you want to get summarize:", height=200) | |
# Create a button to trigger the summarization | |
if st.button("Summarize"): | |
if input_text: | |
# Generate the summary | |
summary = pipe(input_text, max_length=150, min_length=30, do_sample=False) | |
# Display the summarized text | |
st.subheader("Summary:") | |
st.write(summary[0]['summary_text']) | |
else: | |
st.error("Please enter some text to summarize.") |