usmannaziir's picture
Update app.py
e6774ca verified
# app.py
import streamlit as st
from transformers import pipeline
# Load the summarization pipeline with the specified model
pipe = pipeline("summarization", model="Yihui/t5-small-text-summary-generation")
# Set the title of the app
st.title("Summary Generator")
#st.markdown("<p style='color:blue; font-size:20px;'>Developed by Usman</p>", unsafe_allow_html=True)
st.markdown("<p style='color:red; font-size:15px;'>Based on Hugging Face Model</p>", unsafe_allow_html=True)
st.markdown("<p style='color:blue; font-size:20px;'>Tokens min_length=30 & max_length=150</p>", unsafe_allow_html=True)
# Create a text area for user input
input_text = st.text_area("Enter the text you want to get summarize:", height=200)
# Create a button to trigger the summarization
if st.button("Summarize"):
if input_text:
# Generate the summary
summary = pipe(input_text, max_length=150, min_length=30, do_sample=False)
# Display the summarized text
st.subheader("Summary:")
st.write(summary[0]['summary_text'])
else:
st.error("Please enter some text to summarize.")