valentin urena commited on
Commit
003246a
·
verified ·
1 Parent(s): 9c3e344

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -27
app.py CHANGED
@@ -2,21 +2,21 @@ import os
2
  os.environ["KERAS_BACKEND"] = "torch" # "jax", "torch" or "tensorflow"
3
 
4
  import gradio as gr
5
- # import keras_nlp
6
- # import keras
7
- # import spaces
8
- # import torch
9
 
10
  from typing import Iterator
11
  import time
12
 
13
  from chess_board import Game
14
  from datasets import load_dataset
15
- # import google.generativeai as genai
16
 
17
 
18
- # print(f"Is CUDA available: {torch.cuda.is_available()}")
19
- # print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
20
 
21
 
22
  DESCRIPTION = """
@@ -38,13 +38,18 @@ Enjoy your game!
38
  **- Valentin**
39
  """
40
 
41
- # api_key = os.getenv("GEMINI_API_KEY")
42
- # genai.configure(api_key = api_key)
43
 
44
- # model = genai.GenerativeModel(model_name='gemini-1.5-flash-latest')
 
 
 
 
 
 
 
45
 
46
- # Chat
47
- # chat = model.start_chat()
48
 
49
  # @spaces.GPU
50
  def generate(
@@ -53,7 +58,7 @@ def generate(
53
  max_new_tokens: int = 1024,
54
  ) -> Iterator[str]:
55
 
56
- response = "hi there" #chat.send_message(message)
57
 
58
  outputs = ""
59
 
@@ -62,11 +67,6 @@ def generate(
62
  yield outputs
63
 
64
 
65
- # Load the dataset and convert to pandas DataFrame
66
- ds = load_dataset("Lichess/chess-openings", split="train")
67
- df = ds.to_pandas()
68
-
69
- # Function to retrieve moves and name for a selected opening
70
  def get_opening_details(opening_name):
71
  opening_data = df[df['name'] == opening_name].iloc[0]
72
  moves = opening_data['pgn']
@@ -77,11 +77,7 @@ def get_move_list(opening_name):
77
  moves = opening_data['pgn']
78
  pgn_string = moves.split()
79
  return [move for idx,move in enumerate(pgn_string[1:],1) if idx%3!=0]
80
- # return ['e4', 'e5', 'Nf3']
81
-
82
- # Create a list of unique opening names
83
- opening_names = df['name'].unique().tolist()
84
-
85
 
86
  chat_interface = gr.ChatInterface(
87
  fn=generate,
@@ -96,14 +92,11 @@ chat_interface = gr.ChatInterface(
96
  )
97
 
98
 
99
- with gr.Blocks(css=""".big-text {
100
- font-size: 2px !important;
101
- }""", fill_height=True) as demo:
102
  gr.Markdown(DESCRIPTION)
103
 
104
  play_match = Game()
105
 
106
- # chess_png = gr.Image(play_match.display_board())
107
  with gr.Row():
108
  with gr.Column():
109
  board_image = gr.HTML(play_match.display_board())
 
2
  os.environ["KERAS_BACKEND"] = "torch" # "jax", "torch" or "tensorflow"
3
 
4
  import gradio as gr
5
+ import keras_nlp
6
+ import keras
7
+ import spaces
8
+ import torch
9
 
10
  from typing import Iterator
11
  import time
12
 
13
  from chess_board import Game
14
  from datasets import load_dataset
15
+ import google.generativeai as genai
16
 
17
 
18
+ print(f"Is CUDA available: {torch.cuda.is_available()}")
19
+ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
20
 
21
 
22
  DESCRIPTION = """
 
38
  **- Valentin**
39
  """
40
 
41
+ api_key = os.getenv("GEMINI_API_KEY")
42
+ genai.configure(api_key = api_key)
43
 
44
+ model = genai.GenerativeModel(model_name='gemini-1.5-flash-latest')
45
+
46
+ chat = model.start_chat()
47
+
48
+ ds = load_dataset("Lichess/chess-openings", split="train")
49
+ df = ds.to_pandas()
50
+
51
+ opening_names = df['name'].unique().tolist()
52
 
 
 
53
 
54
  # @spaces.GPU
55
  def generate(
 
58
  max_new_tokens: int = 1024,
59
  ) -> Iterator[str]:
60
 
61
+ response = chat.send_message(message)
62
 
63
  outputs = ""
64
 
 
67
  yield outputs
68
 
69
 
 
 
 
 
 
70
  def get_opening_details(opening_name):
71
  opening_data = df[df['name'] == opening_name].iloc[0]
72
  moves = opening_data['pgn']
 
77
  moves = opening_data['pgn']
78
  pgn_string = moves.split()
79
  return [move for idx,move in enumerate(pgn_string[1:],1) if idx%3!=0]
80
+
 
 
 
 
81
 
82
  chat_interface = gr.ChatInterface(
83
  fn=generate,
 
92
  )
93
 
94
 
95
+ with gr.Blocks(css_path="styles.css", fill_height=True) as demo:
 
 
96
  gr.Markdown(DESCRIPTION)
97
 
98
  play_match = Game()
99
 
 
100
  with gr.Row():
101
  with gr.Column():
102
  board_image = gr.HTML(play_match.display_board())