Spaces:
Sleeping
Sleeping
valentin urena
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,21 +2,21 @@ import os
|
|
2 |
os.environ["KERAS_BACKEND"] = "torch" # "jax", "torch" or "tensorflow"
|
3 |
|
4 |
import gradio as gr
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
|
10 |
from typing import Iterator
|
11 |
import time
|
12 |
|
13 |
from chess_board import Game
|
14 |
from datasets import load_dataset
|
15 |
-
|
16 |
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
|
22 |
DESCRIPTION = """
|
@@ -38,13 +38,18 @@ Enjoy your game!
|
|
38 |
**- Valentin**
|
39 |
"""
|
40 |
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
# Chat
|
47 |
-
# chat = model.start_chat()
|
48 |
|
49 |
# @spaces.GPU
|
50 |
def generate(
|
@@ -53,7 +58,7 @@ def generate(
|
|
53 |
max_new_tokens: int = 1024,
|
54 |
) -> Iterator[str]:
|
55 |
|
56 |
-
response =
|
57 |
|
58 |
outputs = ""
|
59 |
|
@@ -62,11 +67,6 @@ def generate(
|
|
62 |
yield outputs
|
63 |
|
64 |
|
65 |
-
# Load the dataset and convert to pandas DataFrame
|
66 |
-
ds = load_dataset("Lichess/chess-openings", split="train")
|
67 |
-
df = ds.to_pandas()
|
68 |
-
|
69 |
-
# Function to retrieve moves and name for a selected opening
|
70 |
def get_opening_details(opening_name):
|
71 |
opening_data = df[df['name'] == opening_name].iloc[0]
|
72 |
moves = opening_data['pgn']
|
@@ -77,11 +77,7 @@ def get_move_list(opening_name):
|
|
77 |
moves = opening_data['pgn']
|
78 |
pgn_string = moves.split()
|
79 |
return [move for idx,move in enumerate(pgn_string[1:],1) if idx%3!=0]
|
80 |
-
|
81 |
-
|
82 |
-
# Create a list of unique opening names
|
83 |
-
opening_names = df['name'].unique().tolist()
|
84 |
-
|
85 |
|
86 |
chat_interface = gr.ChatInterface(
|
87 |
fn=generate,
|
@@ -96,14 +92,11 @@ chat_interface = gr.ChatInterface(
|
|
96 |
)
|
97 |
|
98 |
|
99 |
-
with gr.Blocks(
|
100 |
-
font-size: 2px !important;
|
101 |
-
}""", fill_height=True) as demo:
|
102 |
gr.Markdown(DESCRIPTION)
|
103 |
|
104 |
play_match = Game()
|
105 |
|
106 |
-
# chess_png = gr.Image(play_match.display_board())
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
109 |
board_image = gr.HTML(play_match.display_board())
|
|
|
2 |
os.environ["KERAS_BACKEND"] = "torch" # "jax", "torch" or "tensorflow"
|
3 |
|
4 |
import gradio as gr
|
5 |
+
import keras_nlp
|
6 |
+
import keras
|
7 |
+
import spaces
|
8 |
+
import torch
|
9 |
|
10 |
from typing import Iterator
|
11 |
import time
|
12 |
|
13 |
from chess_board import Game
|
14 |
from datasets import load_dataset
|
15 |
+
import google.generativeai as genai
|
16 |
|
17 |
|
18 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
19 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
20 |
|
21 |
|
22 |
DESCRIPTION = """
|
|
|
38 |
**- Valentin**
|
39 |
"""
|
40 |
|
41 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
42 |
+
genai.configure(api_key = api_key)
|
43 |
|
44 |
+
model = genai.GenerativeModel(model_name='gemini-1.5-flash-latest')
|
45 |
+
|
46 |
+
chat = model.start_chat()
|
47 |
+
|
48 |
+
ds = load_dataset("Lichess/chess-openings", split="train")
|
49 |
+
df = ds.to_pandas()
|
50 |
+
|
51 |
+
opening_names = df['name'].unique().tolist()
|
52 |
|
|
|
|
|
53 |
|
54 |
# @spaces.GPU
|
55 |
def generate(
|
|
|
58 |
max_new_tokens: int = 1024,
|
59 |
) -> Iterator[str]:
|
60 |
|
61 |
+
response = chat.send_message(message)
|
62 |
|
63 |
outputs = ""
|
64 |
|
|
|
67 |
yield outputs
|
68 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
70 |
def get_opening_details(opening_name):
|
71 |
opening_data = df[df['name'] == opening_name].iloc[0]
|
72 |
moves = opening_data['pgn']
|
|
|
77 |
moves = opening_data['pgn']
|
78 |
pgn_string = moves.split()
|
79 |
return [move for idx,move in enumerate(pgn_string[1:],1) if idx%3!=0]
|
80 |
+
|
|
|
|
|
|
|
|
|
81 |
|
82 |
chat_interface = gr.ChatInterface(
|
83 |
fn=generate,
|
|
|
92 |
)
|
93 |
|
94 |
|
95 |
+
with gr.Blocks(css_path="styles.css", fill_height=True) as demo:
|
|
|
|
|
96 |
gr.Markdown(DESCRIPTION)
|
97 |
|
98 |
play_match = Game()
|
99 |
|
|
|
100 |
with gr.Row():
|
101 |
with gr.Column():
|
102 |
board_image = gr.HTML(play_match.display_board())
|