File size: 21,605 Bytes
bffbc7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import random
from datetime import datetime, timedelta
import requests
import sys
import json
from typing import List, Dict, Any

# Global variable to store the data for reuse
global_df = None

# Configuration
API_BASE_URL = "http://65.0.131.34:8000"

def get_agent_type_by_name(type_name: str) -> Dict[str, Any]:
    """Get agent type by name"""
    response = requests.get(f"{API_BASE_URL}/api/agent-types/name/{type_name}")
    if response.status_code == 404:
        print(f"Error: Agent type '{type_name}' not found")
        return None
    response.raise_for_status()
    return response.json()

def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]:
    """Get attribute definition by name"""
    response = requests.get(f"{API_BASE_URL}/api/attributes/name/{attr_name}")
    if response.status_code == 404:
        print(f"Error: Attribute definition '{attr_name}' not found")
        return None
    response.raise_for_status()
    return response.json()

def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]:
    """Get all agents of a specific type"""
    response = requests.get(f"{API_BASE_URL}/api/agent-types/{type_id}/agents/")
    if response.status_code == 404:
        print(f"No agents found for type ID {type_id}")
        return []
    response.raise_for_status()
    return response.json()

def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]:
    """Get all attribute values for a specific attribute definition across all agents of a given list"""
    all_attributes = []
    
    # For each agent, get their attributes and filter for the one we want
    for agent in agents:
        agent_id = agent["agent_id"]
        
        # Call the /api/agents/{agent_id}/attributes/ endpoint
        response = requests.get(f"{API_BASE_URL}/api/agents/{agent_id}/attributes/", params={"limit": 1000})
        if response.status_code == 404:
            print(f"No attributes found for agent ID {agent_id}")
            continue
        
        try:
            response.raise_for_status()
            agent_attrs = response.json()
            
            # Filter for the specific attribute definition ID
            filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id]
            all_attributes.extend(filtered_attrs)
        except requests.exceptions.RequestException as e:
            print(f"Error fetching attributes for agent ID {agent_id}: {e}")
    
    return all_attributes

def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str:
    """Get agent name from agent ID"""
    for agent in agents:
        if agent["agent_id"] == agent_id:
            return agent["agent_name"]
    return "Unknown"

def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
    """Extract APR value and timestamp from JSON value"""
    try:
        # The APR value is stored in the json_value field
        if attr["json_value"] is None:
            return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}
        
        # If json_value is a string, parse it
        if isinstance(attr["json_value"], str):
            json_data = json.loads(attr["json_value"])
        else:
            json_data = attr["json_value"]
        
        apr = json_data.get("apr")
        timestamp = json_data.get("timestamp")
        
        # Convert timestamp to datetime if it exists
        timestamp_dt = None
        if timestamp:
            timestamp_dt = datetime.fromtimestamp(timestamp)
            
        return {"apr": apr, "timestamp": timestamp_dt, "agent_id": attr["agent_id"], "is_dummy": False}
    except (json.JSONDecodeError, KeyError, TypeError) as e:
        print(f"Error parsing JSON value: {e}")
        return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}

def fetch_apr_data_from_db():
    """
    Fetch APR data from database using the API.
    """
    global global_df
    
    try:
        # Step 1: Find the Modius agent type
        modius_type = get_agent_type_by_name("Modius")
        if not modius_type:
            print("Modius agent type not found, using placeholder data")
            global_df = pd.DataFrame([])
            return global_df
        
        type_id = modius_type["type_id"]
        
        # Step 2: Find the APR attribute definition
        apr_attr_def = get_attribute_definition_by_name("APR")
        if not apr_attr_def:
            print("APR attribute definition not found, using placeholder data")
            global_df = pd.DataFrame([])
            return global_df
            
        attr_def_id = apr_attr_def["attr_def_id"]
        
        # Step 3: Get all agents of type Modius
        modius_agents = get_agents_by_type(type_id)
        if not modius_agents:
            print("No agents of type 'Modius' found")
            global_df = pd.DataFrame([])
            return global_df
        
        # Step 4: Fetch all APR values for Modius agents
        apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id)
        if not apr_attributes:
            print("No APR values found for 'Modius' agents")
            global_df = pd.DataFrame([])
            return global_df
        
        # Step 5: Extract APR data
        apr_data_list = []
        for attr in apr_attributes:
            apr_data = extract_apr_value(attr)
            if apr_data["apr"] is not None and apr_data["timestamp"] is not None:
                # Get agent name
                agent_name = get_agent_name(attr["agent_id"], modius_agents)
                # Add agent name to the data
                apr_data["agent_name"] = agent_name
                # Add is_dummy flag (all real data)
                apr_data["is_dummy"] = False
                
                # Mark negative values as "Performance" metrics
                if apr_data["apr"] < 0:
                    apr_data["metric_type"] = "Performance"
                else:
                    apr_data["metric_type"] = "APR"
                    
                apr_data_list.append(apr_data)
        
        # Convert list of dictionaries to DataFrame
        if not apr_data_list:
            print("No valid APR data extracted")
            global_df = pd.DataFrame([])
            return global_df
        
        global_df = pd.DataFrame(apr_data_list)
        return global_df
        
    except requests.exceptions.RequestException as e:
        print(f"API request error: {e}")
        global_df = pd.DataFrame([])
        return global_df
    except Exception as e:
        print(f"Error fetching APR data: {e}")
        global_df = pd.DataFrame([])
        return global_df

def generate_apr_visualizations():
    """Generate APR visualizations with real data only (no dummy data)"""
    global global_df
    
    # Fetch data from database
    df = fetch_apr_data_from_db()
    
    # If we got no data at all, return placeholder figures
    if df.empty:
        print("No APR data available. Using fallback visualization.")
        # Create empty visualizations with a message using Plotly
        fig = go.Figure()
        fig.add_annotation(
            x=0.5, y=0.5,
            text="No APR data available",
            font=dict(size=20),
            showarrow=False
        )
        fig.update_layout(
            xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
        )
        
        # Save as static files for reference
        fig.write_html("modius_apr_per_agent_graph.html")
        fig.write_image("modius_apr_per_agent_graph.png")
        fig.write_html("modius_apr_combined_graph.html")
        fig.write_image("modius_apr_combined_graph.png")
        
        csv_file = None
        return fig, fig, csv_file
    
    # No longer generating dummy data
    # Set global_df for access by other functions
    global_df = df
    
    # Save to CSV before creating visualizations
    csv_file = save_to_csv(df)
    
    # Create per-agent time series graph (returns figure object)
    per_agent_fig = create_time_series_graph_per_agent(df)
    
    # Create combined time series graph (returns figure object)
    combined_fig = create_combined_time_series_graph(df)
    
    return per_agent_fig, combined_fig, csv_file

def create_time_series_graph_per_agent(df):
    """Create a time series graph for each agent using Plotly"""
    # Get unique agents
    unique_agents = df['agent_id'].unique()
    
    if len(unique_agents) == 0:
        print("No agent data to plot")
        fig = go.Figure()
        fig.add_annotation(
            text="No agent data available",
            x=0.5, y=0.5,
            showarrow=False, font=dict(size=20)
        )
        return fig
    
    # Create a subplot figure for each agent
    fig = make_subplots(rows=len(unique_agents), cols=1, 
                       subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}" 
                                      for agent_id in unique_agents],
                       vertical_spacing=0.1)
    
    # Plot data for each agent
    for i, agent_id in enumerate(unique_agents):
        agent_data = df[df['agent_id'] == agent_id].copy()
        agent_name = agent_data['agent_name'].iloc[0]
        row = i + 1
        
        # Add zero line to separate APR and Performance
        fig.add_shape(
            type="line", line=dict(dash="solid", width=1.5, color="black"),
            y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
            row=row, col=1
        )
        
        # Add background colors
        fig.add_shape(
            type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0),
            y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
            row=row, col=1, layer="below"
        )
        fig.add_shape(
            type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0),
            y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
            row=row, col=1, layer="below"
        )
        
        # Create separate dataframes for different data types
        apr_data = agent_data[agent_data['metric_type'] == 'APR']
        perf_data = agent_data[agent_data['metric_type'] == 'Performance']
        
        # Sort all data by timestamp for the line plots
        combined_agent_data = agent_data.sort_values('timestamp')
        
        # Add main line connecting all points
        fig.add_trace(
            go.Scatter(
                x=combined_agent_data['timestamp'], 
                y=combined_agent_data['apr'],
                mode='lines',
                line=dict(color='purple', width=2),
                name=f'{agent_name}',
                legendgroup=agent_name,
                showlegend=(i == 0),  # Only show in legend once
                hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
            ),
            row=row, col=1
        )
        
        # Add scatter points for APR values
        if not apr_data.empty:
            fig.add_trace(
                go.Scatter(
                    x=apr_data['timestamp'], 
                    y=apr_data['apr'],
                    mode='markers',
                    marker=dict(color='blue', size=10, symbol='circle'),
                    name='APR',
                    legendgroup='APR',
                    showlegend=(i == 0),
                    hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>'
                ),
                row=row, col=1
            )
        
        # Add scatter points for Performance values
        if not perf_data.empty:
            fig.add_trace(
                go.Scatter(
                    x=perf_data['timestamp'], 
                    y=perf_data['apr'],
                    mode='markers',
                    marker=dict(color='red', size=10, symbol='square'),
                    name='Performance',
                    legendgroup='Performance',
                    showlegend=(i == 0),
                    hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>'
                ),
                row=row, col=1
            )
        
        # Update axes
        fig.update_xaxes(title_text="Time", row=row, col=1)
        fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)')
    
    # Update layout
    fig.update_layout(
        height=400 * len(unique_agents),
        width=1000,
        title_text="APR and Performance Values per Agent",
        template="plotly_white",
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1
        ),
        margin=dict(r=20, l=20, t=30, b=20),
        hovermode="closest"
    )
    
    # Save the figure (still useful for reference)
    graph_file = "modius_apr_per_agent_graph.html"
    fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
    
    # Also save as image for compatibility
    img_file = "modius_apr_per_agent_graph.png"
    fig.write_image(img_file)
    
    print(f"Per-agent graph saved to {graph_file} and {img_file}")
    
    # Return the figure object for direct use in Gradio
    return fig

def create_combined_time_series_graph(df):
    """Create a combined time series graph for all agents using Plotly"""
    if len(df) == 0:
        print("No data to plot combined graph")
        fig = go.Figure()
        fig.add_annotation(
            text="No data available",
            x=0.5, y=0.5,
            showarrow=False, font=dict(size=20)
        )
        return fig
    
    # Create Plotly figure
    fig = go.Figure()
    
    # Get unique agents
    unique_agents = df['agent_id'].unique()
    
    # Define a color scale for different agents
    colors = px.colors.qualitative.Plotly[:len(unique_agents)]
    
    # Add background shapes for APR and Performance regions
    min_time = df['timestamp'].min()
    max_time = df['timestamp'].max()
    
    # Add shape for APR region (above zero)
    fig.add_shape(
        type="rect",
        fillcolor="rgba(230, 243, 255, 0.3)",
        line=dict(width=0),
        y0=0, y1=1000,
        x0=min_time, x1=max_time,
        layer="below"
    )
    
    # Add shape for Performance region (below zero)
    fig.add_shape(
        type="rect",
        fillcolor="rgba(255, 230, 230, 0.3)",
        line=dict(width=0),
        y0=-1000, y1=0,
        x0=min_time, x1=max_time,
        layer="below"
    )
    
    # Add zero line
    fig.add_shape(
        type="line",
        line=dict(dash="solid", width=1.5, color="black"),
        y0=0, y1=0,
        x0=min_time, x1=max_time
    )
    
    # Add data for each agent
    for i, agent_id in enumerate(unique_agents):
        agent_data = df[df['agent_id'] == agent_id].copy()
        agent_name = agent_data['agent_name'].iloc[0]
        color = colors[i % len(colors)]
        
        # Sort the data by timestamp
        agent_data = agent_data.sort_values('timestamp')
        
        # Add the combined line for both APR and Performance
        fig.add_trace(
            go.Scatter(
                x=agent_data['timestamp'],
                y=agent_data['apr'],
                mode='lines',
                line=dict(color=color, width=2),
                name=f'{agent_name}',
                legendgroup=agent_name,
                hovertemplate='Time: %{x}<br>Value: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
            )
        )
        
        # Add scatter points for APR values
        apr_data = agent_data[agent_data['metric_type'] == 'APR']
        if not apr_data.empty:
            fig.add_trace(
                go.Scatter(
                    x=apr_data['timestamp'],
                    y=apr_data['apr'],
                    mode='markers',
                    marker=dict(color=color, symbol='circle', size=8),
                    name=f'{agent_name} APR',
                    legendgroup=agent_name,
                    showlegend=False,
                    hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
                )
            )
        
        # Add scatter points for Performance values
        perf_data = agent_data[agent_data['metric_type'] == 'Performance']
        if not perf_data.empty:
            fig.add_trace(
                go.Scatter(
                    x=perf_data['timestamp'],
                    y=perf_data['apr'],
                    mode='markers',
                    marker=dict(color=color, symbol='square', size=8),
                    name=f'{agent_name} Perf',
                    legendgroup=agent_name,
                    showlegend=False,
                    hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
                )
            )
    
    # Update layout
    fig.update_layout(
        title="APR and Performance Values for All Agents",
        xaxis_title="Time",
        yaxis_title="Value",
        template="plotly_white",
        height=600,
        width=1000,
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1,
            groupclick="toggleitem"
        ),
        margin=dict(r=20, l=20, t=30, b=20),
        hovermode="closest"
    )
    
    # Update axes
    fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
    fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
    
    # Save the figure (still useful for reference)
    graph_file = "modius_apr_combined_graph.html"
    fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
    
    # Also save as image for compatibility
    img_file = "modius_apr_combined_graph.png"
    fig.write_image(img_file)
    
    print(f"Combined graph saved to {graph_file} and {img_file}")
    
    # Return the figure object for direct use in Gradio
    return fig

def save_to_csv(df):
    """Save the APR data DataFrame to a CSV file and return the file path"""
    if df.empty:
        print("No APR data to save to CSV")
        return None
    
    # Define the CSV file path
    csv_file = "modius_apr_values.csv"
    
    # Save to CSV
    df.to_csv(csv_file, index=False)
    print(f"APR data saved to {csv_file}")
    
    # Also generate a statistics CSV file
    stats_df = generate_statistics_from_data(df)
    stats_csv = "modius_apr_statistics.csv"
    stats_df.to_csv(stats_csv, index=False)
    print(f"Statistics saved to {stats_csv}")
    
    return csv_file

def generate_statistics_from_data(df):
    """Generate statistics from the APR data"""
    if df.empty:
        return pd.DataFrame()
    
    # Get unique agents
    unique_agents = df['agent_id'].unique()
    stats_list = []
    
    # Generate per-agent statistics
    for agent_id in unique_agents:
        agent_data = df[df['agent_id'] == agent_id]
        agent_name = agent_data['agent_name'].iloc[0]
        
        # APR statistics
        apr_data = agent_data[agent_data['metric_type'] == 'APR']
        real_apr = apr_data[apr_data['is_dummy'] == False]
        
        # Performance statistics
        perf_data = agent_data[agent_data['metric_type'] == 'Performance']
        real_perf = perf_data[perf_data['is_dummy'] == False]
        
        stats = {
            'agent_id': agent_id,
            'agent_name': agent_name,
            'total_points': len(agent_data),
            'apr_points': len(apr_data),
            'performance_points': len(perf_data),
            'real_apr_points': len(real_apr),
            'real_performance_points': len(real_perf),
            'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None,
            'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None,
            'max_apr': apr_data['apr'].max() if not apr_data.empty else None,
            'min_apr': apr_data['apr'].min() if not apr_data.empty else None,
            'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None
        }
        stats_list.append(stats)
    
    # Generate overall statistics
    apr_only = df[df['metric_type'] == 'APR']
    perf_only = df[df['metric_type'] == 'Performance']
    
    overall_stats = {
        'agent_id': 'ALL',
        'agent_name': 'All Agents',
        'total_points': len(df),
        'apr_points': len(apr_only),
        'performance_points': len(perf_only),
        'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]),
        'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]),
        'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None,
        'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None,
        'max_apr': apr_only['apr'].max() if not apr_only.empty else None,
        'min_apr': apr_only['apr'].min() if not apr_only.empty else None,
        'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None
    }
    stats_list.append(overall_stats)
    
    return pd.DataFrame(stats_list)