File size: 14,281 Bytes
322b74c
 
07d589f
322b74c
 
 
 
bffbc7a
 
b8d3277
bffbc7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d3277
 
39b4e26
b8d3277
322b74c
b8d3277
 
 
 
 
322b74c
b8d3277
 
 
 
 
322b74c
 
 
 
 
b8d3277
 
 
 
 
 
 
 
 
 
 
 
bffbc7a
322b74c
bffbc7a
322b74c
bffbc7a
 
322b74c
 
bffbc7a
 
322b74c
 
 
bffbc7a
 
 
 
b8d3277
322b74c
 
 
bffbc7a
 
322b74c
b8d3277
322b74c
c744bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322b74c
 
 
39b4e26
b8d3277
322b74c
b8d3277
322b74c
 
 
 
 
 
b8d3277
322b74c
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d3277
 
322b74c
 
 
 
 
 
 
 
27431d4
 
322b74c
 
b8d3277
 
 
27431d4
b8d3277
322b74c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d3277
 
322b74c
 
 
 
 
 
 
 
27431d4
 
322b74c
 
b8d3277
 
 
27431d4
b8d3277
322b74c
 
 
 
 
 
 
 
 
 
b8d3277
322b74c
b8d3277
 
13dff28
 
 
 
 
 
 
 
322b74c
13dff28
 
b8d3277
 
13dff28
322b74c
 
 
5b3ed4c
b8d3277
322b74c
 
 
 
9a26d72
5b3ed4c
13dff28
322b74c
 
 
 
 
 
 
 
 
 
 
 
5b3ed4c
 
322b74c
 
9a26d72
b8d3277
27431d4
322b74c
9a26d72
 
 
 
 
322b74c
 
c744bf3
bffbc7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322b74c
 
 
 
bffbc7a
322b74c
bffbc7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d3277
322b74c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import requests
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import json
# Commenting out blockchain-related imports that cause loading issues
# from web3 import Web3
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import random
# Comment out the import for now and replace with dummy functions
# from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
# Import APR visualization functions from the new module
from apr_visualization import generate_apr_visualizations

# Create dummy functions for the commented out imports
def create_transcation_visualizations():
    """Dummy implementation that returns a placeholder graph"""
    fig = go.Figure()
    fig.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    return fig

def create_active_agents_visualizations():
    """Dummy implementation that returns a placeholder graph"""
    fig = go.Figure()
    fig.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    return fig

# Comment out the blockchain connection code
"""
# Load environment variables from .env file
# RPC URLs
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
MODE_RPC_URL = os.getenv('MODE_RPC_URL')

# Initialize Web3 instances
web3_instances = {
    'optimism': Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL)),
    'mode': Web3(Web3.HTTPProvider(MODE_RPC_URL))
}

# Contract addresses for service registries
contract_addresses = {
    'optimism': '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44',
    'mode': '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE'
}

# Load the ABI from the provided JSON file
with open('./contracts/service_registry_abi.json', 'r') as abi_file:
    contract_abi = json.load(abi_file)

# Create the contract instances
service_registries = {
    chain_name: web3.eth.contract(address=contract_addresses[chain_name], abi=contract_abi)
    for chain_name, web3 in web3_instances.items()
}

# Check if connections are successful
for chain_name, web3_instance in web3_instances.items():
    if not web3_instance.is_connected():
        raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.")
    else:
        print(f"Successfully connected to the {chain_name.capitalize()} network.")
"""

# Dummy blockchain functions to replace the commented ones
def get_transfers(integrator: str, wallet: str) -> str:
    """Dummy function that returns an empty result"""
    return {"transfers": []}

def fetch_and_aggregate_transactions():
    """Dummy function that returns empty data"""
    return [], {}

# Function to parse the transaction data and prepare it for visualization
def process_transactions_and_agents(data):
    """Dummy function that returns empty dataframes"""
    df_transactions = pd.DataFrame()
    df_agents = pd.DataFrame(columns=['date', 'agent_count'])
    df_agents_weekly = pd.DataFrame()
    return df_transactions, df_agents, df_agents_weekly

# Function to create visualizations based on the metrics
def create_visualizations():
    """
    # Commenting out the original visualization code temporarily for debugging
    transactions_data = fetch_and_aggregate_transactions()
    df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data)

    # Fetch daily value locked data
    df_tvl = pd.read_csv('daily_value_locked.csv')

    # Calculate total value locked per chain per day
    df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"]
    df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index()
    df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date'])

    # Filter out dates with zero total value locked
    df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0]

    chain_name_map = {
        "mode": "Mode",
        "base": "Base",
        "ethereum": "Ethereum",
        "optimism": "Optimism"
    }
    df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map)
    
    # Plot total value locked
    fig_tvl = px.bar(
        df_tvl_daily,
        x="date",
        y="total_value_locked_usd",
        color="chain_name",
        opacity=0.7,
        title="Total Volume Invested in Pools in Different Chains Daily",
        labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"},
        barmode='stack',
        color_discrete_map={
            "Mode": "orange",
            "Base": "purple",
            "Ethereum": "darkgreen",
            "Optimism": "blue"
        }
    )
    fig_tvl.update_layout(
        xaxis_title="Date",
        
        yaxis=dict(tickmode='linear', tick0=0, dtick=4),
        xaxis=dict(
            tickmode='array',
            tickvals=df_tvl_daily['date'],
            ticktext=df_tvl_daily['date'].dt.strftime('%b %d'),
            tickangle=-45,
        ),
        bargap=0.6,  # Increase gap between bar groups (0-1)
        bargroupgap=0.1,  # Decrease gap between bars in a group (0-1)
        height=600,
        width=1200, # Specify width to prevent bars from being too wide
        showlegend=True,
        template='plotly_white'
    )
    fig_tvl.update_xaxes(tickformat="%b %d") 

    chain_name_map = {
        10: "Optimism",
        8453: "Base",
        1: "Ethereum",
        34443: "Mode"
    }

    df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map)
    df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map)

    df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str)
    df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str)
    df_transactions['date'] = pd.to_datetime(df_transactions['date'])
    df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_chain"] == x["receiving_chain"], axis=1)

    swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count")
    fig_swaps_chain = px.bar(
        swaps_per_chain,
        x="date",
        y="swap_count",
        color="sending_chain",
        title="Chain Daily Activity: Swaps",
        labels={"sending_chain": "Transaction Chain", "swap_count": "Daily Swap Nr"},
        barmode="stack",
        opacity=0.7,
        color_discrete_map={
            "Optimism": "blue",
            "Ethereum": "darkgreen",
            "Base": "purple",
            "Mode": "orange"
        }
    )
    fig_swaps_chain.update_layout(
        xaxis_title="Date",
        yaxis_title="Daily Swap Count",
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            tickmode='array',
            tickvals=[d for d in swaps_per_chain['date']],
            ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date']],
            tickangle=-45,
        ),
        bargap=0.6,
        bargroupgap=0.1,
        height=600,
        width=1200,
        margin=dict(l=50, r=50, t=50, b=50),
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="right",
            x=0.99
        ),
        template='plotly_white'
    )
    fig_swaps_chain.update_xaxes(tickformat="%m-%d")

    df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1)

    bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count")
    fig_bridges_chain = px.bar(
        bridges_per_chain,
        x="date",
        y="bridge_count",
        color="sending_chain",
        title="Chain Daily Activity: Bridges",
        labels={"sending_chain": "Transaction Chain", "bridge_count": "Daily Bridge Nr"},
        barmode="stack",
        opacity=0.7,
        color_discrete_map={
            "Optimism": "blue",
            "Ethereum": "darkgreen",
            "Base": "purple",
            "Mode": "orange"
        }
    )
    fig_bridges_chain.update_layout(
        xaxis_title="Date",
        yaxis_title="Daily Bridge Count",
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            tickmode='array',
            tickvals=[d for d in bridges_per_chain['date']],
            ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date']],
            tickangle=-45,
        ),
        bargap=0.6,
        bargroupgap=0.1,
        height=600,
        width=1200,
        margin=dict(l=50, r=50, t=50, b=50),
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="right",
            x=0.99
        ),
        template='plotly_white'
    )
    fig_bridges_chain.update_xaxes(tickformat="%m-%d")
    df_agents['date'] = pd.to_datetime(df_agents['date'])

    daily_agents_df = df_agents.groupby('date').agg({'agent_count': 'sum'}).reset_index()
    daily_agents_df.rename(columns={'agent_count': 'daily_agent_count'}, inplace=True)
    # Sort by date to ensure proper running total calculation
    daily_agents_df = daily_agents_df.sort_values('date')
    
    # Create week column
    daily_agents_df['week'] = daily_agents_df['date'].dt.to_period('W').apply(lambda r: r.start_time)
    
    # Calculate running total within each week
    daily_agents_df['running_weekly_total'] = daily_agents_df.groupby('week')['daily_agent_count'].cumsum()
    
    # Create final merged dataframe
    weekly_merged_df = daily_agents_df.copy()
    adjustment_date = pd.to_datetime('2024-11-15')
    weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'daily_agent_count'] -= 1
    weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'running_weekly_total'] -= 1
    fig_agents_registered = go.Figure(data=[
        go.Bar(
            name='Daily nr of Registered Agents',
            x=weekly_merged_df['date'].dt.strftime("%b %d"),
            y=weekly_merged_df['daily_agent_count'],
            opacity=0.7,
            marker_color='blue'
        ),
        go.Bar(
            name='Weekly Nr of Registered Agents',
            x=weekly_merged_df['date'].dt.strftime("%b %d"),
            y=weekly_merged_df['running_weekly_total'],
            opacity=0.7,
            marker_color='purple'
        )
    ])

    fig_agents_registered.update_layout(
        xaxis_title='Date',
        yaxis_title='Number of Agents',
        title="Nr of Agents Registered",
        barmode='group',
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            categoryorder='array',
            categoryarray=weekly_merged_df['date'].dt.strftime("%b %d"),
            tickangle=-45
        ),
        bargap=0.3,
        height=600,
        width=1200,
        showlegend=True,
        legend=dict(
            yanchor="top",
            xanchor="right",
        ),
        template='plotly_white',
    )

    return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl
    """
    # Placeholder figures for testing
    fig_swaps_chain = go.Figure()
    fig_swaps_chain.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    
    fig_bridges_chain = go.Figure()
    fig_bridges_chain.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    
    fig_agents_registered = go.Figure()
    fig_agents_registered.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    
    fig_tvl = go.Figure()
    fig_tvl.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    
    return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_tvl

# Gradio interface
def dashboard():
    with gr.Blocks() as demo:
        gr.Markdown("# Valory APR Metrics")
        
        # APR Metrics tab - the only tab
        with gr.Tab("APR Metrics"):
            with gr.Column():
                refresh_btn = gr.Button("Refresh APR Data")
                
                # Create containers for plotly figures
                per_agent_graph = gr.Plot(label="APR Per Agent")
                combined_graph = gr.Plot(label="Combined APR (All Agents)")
                
                # Function to update both graphs
                def update_apr_graphs():
                    # Generate visualizations and get figure objects directly
                    per_agent_fig, combined_fig, _ = generate_apr_visualizations()
                    return per_agent_fig, combined_fig
                
                # Set up the button click event
                refresh_btn.click(
                    fn=update_apr_graphs,
                    inputs=[],
                    outputs=[per_agent_graph, combined_graph]
                )
                
                # Initialize the graphs on load
                # We'll use placeholder figures initially
                import plotly.graph_objects as go
                placeholder_fig = go.Figure()
                placeholder_fig.add_annotation(
                    text="Click 'Refresh APR Data' to load APR graphs", 
                    x=0.5, y=0.5, 
                    showarrow=False, 
                    font=dict(size=15)
                )
                per_agent_graph.value = placeholder_fig
                combined_graph.value = placeholder_fig
        
    return demo

# Launch the dashboard
if __name__ == "__main__":
    dashboard().launch()