gauravlochab
feat: adding volumne graph
5aa3a66
raw
history blame
152 kB
import requests
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from datetime import datetime, timedelta
import json
# Commenting out blockchain-related imports that cause loading issues
# from web3 import Web3
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import random
import logging
from typing import List, Dict, Any, Optional
# Comment out the import for now and replace with dummy functions
# from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
# APR visualization functions integrated directly
# Set up logging with appropriate verbosity
logging.basicConfig(
level=logging.INFO, # Use INFO level instead of DEBUG to reduce verbosity
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.FileHandler("app_debug.log"), # Log to file for persistence
logging.StreamHandler() # Also log to console
]
)
logger = logging.getLogger(__name__)
# Reduce third-party library logging
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
# Log the startup information
logger.info("============= APPLICATION STARTING =============")
logger.info(f"Running from directory: {os.getcwd()}")
# Global variables to store the data for reuse
global_df = None
global_roi_df = None
global_volume_df = None
# Configuration
API_BASE_URL = "https://afmdb.autonolas.tech"
logger.info(f"Using API endpoint: {API_BASE_URL}")
def get_agent_type_by_name(type_name: str) -> Dict[str, Any]:
"""Get agent type by name"""
url = f"{API_BASE_URL}/api/agent-types/name/{type_name}"
logger.debug(f"Calling API: {url}")
try:
response = requests.get(url)
logger.debug(f"Response status: {response.status_code}")
if response.status_code == 404:
logger.error(f"Agent type '{type_name}' not found")
return None
response.raise_for_status()
result = response.json()
logger.debug(f"Agent type response: {result}")
return result
except Exception as e:
logger.error(f"Error in get_agent_type_by_name: {e}")
return None
def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]:
"""Get attribute definition by name"""
url = f"{API_BASE_URL}/api/attributes/name/{attr_name}"
logger.debug(f"Calling API: {url}")
try:
response = requests.get(url)
logger.debug(f"Response status: {response.status_code}")
if response.status_code == 404:
logger.error(f"Attribute definition '{attr_name}' not found")
return None
response.raise_for_status()
result = response.json()
logger.debug(f"Attribute definition response: {result}")
return result
except Exception as e:
logger.error(f"Error in get_attribute_definition_by_name: {e}")
return None
def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]:
"""Get all agents of a specific type"""
url = f"{API_BASE_URL}/api/agent-types/{type_id}/agents/"
logger.debug(f"Calling API: {url}")
try:
response = requests.get(url)
logger.debug(f"Response status: {response.status_code}")
if response.status_code == 404:
logger.error(f"No agents found for type ID {type_id}")
return []
response.raise_for_status()
result = response.json()
logger.debug(f"Agents count: {len(result)}")
logger.debug(f"First few agents: {result[:2] if result else []}")
return result
except Exception as e:
logger.error(f"Error in get_agents_by_type: {e}")
return []
def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]:
"""Get all attribute values for a specific attribute definition across all agents of a given list"""
all_attributes = []
logger.debug(f"Getting attributes for {len(agents)} agents with attr_def_id: {attr_def_id}")
# For each agent, get their attributes and filter for the one we want
for agent in agents:
agent_id = agent["agent_id"]
# Call the /api/agents/{agent_id}/attributes/ endpoint
url = f"{API_BASE_URL}/api/agents/{agent_id}/attributes/"
logger.debug(f"Calling API for agent {agent_id}: {url}")
try:
response = requests.get(url, params={"limit": 1000})
if response.status_code == 404:
logger.error(f"No attributes found for agent ID {agent_id}")
continue
response.raise_for_status()
agent_attrs = response.json()
logger.debug(f"Agent {agent_id} has {len(agent_attrs)} attributes")
# Filter for the specific attribute definition ID
filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id]
logger.debug(f"Agent {agent_id} has {len(filtered_attrs)} APR attributes")
if filtered_attrs:
logger.debug(f"Sample attribute for agent {agent_id}: {filtered_attrs[0]}")
all_attributes.extend(filtered_attrs)
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching attributes for agent ID {agent_id}: {e}")
logger.info(f"Total APR attributes found across all agents: {len(all_attributes)}")
return all_attributes
def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str:
"""Get agent name from agent ID"""
for agent in agents:
if agent["agent_id"] == agent_id:
return agent["agent_name"]
return "Unknown"
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
"""Extract APR value, adjusted APR value, ROI value, volume, and timestamp from JSON value"""
try:
agent_id = attr.get("agent_id", "unknown")
logger.debug(f"Extracting APR value for agent {agent_id}")
# The APR value is stored in the json_value field
if attr["json_value"] is None:
logger.debug(f"Agent {agent_id}: json_value is None")
return {"apr": None, "adjusted_apr": None, "roi": None, "volume": None, "timestamp": None, "agent_id": agent_id, "is_dummy": False}
# If json_value is a string, parse it
if isinstance(attr["json_value"], str):
logger.debug(f"Agent {agent_id}: json_value is string, parsing")
json_data = json.loads(attr["json_value"])
else:
json_data = attr["json_value"]
apr = json_data.get("apr")
adjusted_apr = json_data.get("adjusted_apr") # Extract adjusted_apr if present
timestamp = json_data.get("timestamp")
volume = json_data.get("volume") # Extract volume if present
# Extract ROI (f_i_ratio) from calculation_metrics if it exists
roi = None
if "calculation_metrics" in json_data and json_data["calculation_metrics"] is not None:
roi = json_data["calculation_metrics"].get("f_i_ratio")
# Try to extract volume from portfolio_snapshot if it's not directly in json_data
if volume is None and "portfolio_snapshot" in json_data and json_data["portfolio_snapshot"] is not None:
portfolio = json_data["portfolio_snapshot"].get("portfolio")
if portfolio and isinstance(portfolio, dict):
volume = portfolio.get("volume")
logger.debug(f"Agent {agent_id}: Raw APR value: {apr}, adjusted APR value: {adjusted_apr}, ROI value: {roi}, volume: {volume}, timestamp: {timestamp}")
# Convert timestamp to datetime if it exists
timestamp_dt = None
if timestamp:
timestamp_dt = datetime.fromtimestamp(timestamp)
result = {
"apr": apr,
"adjusted_apr": adjusted_apr,
"roi": roi,
"volume": volume,
"timestamp": timestamp_dt,
"agent_id": agent_id,
"is_dummy": False
}
logger.debug(f"Agent {agent_id}: Extracted result: {result}")
return result
except (json.JSONDecodeError, KeyError, TypeError) as e:
logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}")
logger.error(f"Problematic json_value: {attr.get('json_value')}")
return {"apr": None, "adjusted_apr": None, "roi": None, "volume": None, "timestamp": None, "agent_id": attr.get('agent_id'), "is_dummy": False}
def fetch_apr_data_from_db():
"""
Fetch APR data from database using the API.
"""
global global_df
global global_roi_df
logger.info("==== Starting APR data fetch ====")
try:
# Step 1: Find the Modius agent type
logger.info("Finding Modius agent type")
modius_type = get_agent_type_by_name("Modius")
if not modius_type:
logger.error("Modius agent type not found, using placeholder data")
global_df = pd.DataFrame([])
return global_df
type_id = modius_type["type_id"]
logger.info(f"Found Modius agent type with ID: {type_id}")
# Step 2: Find the APR attribute definition
logger.info("Finding APR attribute definition")
apr_attr_def = get_attribute_definition_by_name("APR")
if not apr_attr_def:
logger.error("APR attribute definition not found, using placeholder data")
global_df = pd.DataFrame([])
return global_df
attr_def_id = apr_attr_def["attr_def_id"]
logger.info(f"Found APR attribute definition with ID: {attr_def_id}")
# Step 3: Get all agents of type Modius
logger.info(f"Getting all agents of type Modius (type_id: {type_id})")
modius_agents = get_agents_by_type(type_id)
if not modius_agents:
logger.error("No agents of type 'Modius' found")
global_df = pd.DataFrame([])
return global_df
logger.info(f"Found {len(modius_agents)} Modius agents")
logger.debug(f"Modius agents: {[{'agent_id': a['agent_id'], 'agent_name': a['agent_name']} for a in modius_agents]}")
# Step 4: Fetch all APR values for Modius agents
logger.info(f"Fetching APR values for all Modius agents (attr_def_id: {attr_def_id})")
apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id)
if not apr_attributes:
logger.error("No APR values found for 'Modius' agents")
global_df = pd.DataFrame([])
return global_df
logger.info(f"Found {len(apr_attributes)} APR attributes total")
# Step 5: Extract APR and ROI data
logger.info("Extracting APR and ROI data from attributes")
apr_data_list = []
roi_data_list = []
for attr in apr_attributes:
data = extract_apr_value(attr)
if data["timestamp"] is not None:
# Get agent name
agent_name = get_agent_name(attr["agent_id"], modius_agents)
# Add agent name to the data
data["agent_name"] = agent_name
# Add is_dummy flag (all real data)
data["is_dummy"] = False
# Process APR data
if data["apr"] is not None:
# Include all APR values (including negative ones) EXCEPT zero and -100
if data["apr"] != 0 and data["apr"] != -100:
apr_entry = data.copy()
apr_entry["metric_type"] = "APR"
logger.debug(f"Agent {agent_name} ({attr['agent_id']}): APR value: {data['apr']}")
# Add to the APR data list
apr_data_list.append(apr_entry)
else:
# Log that we're skipping zero or -100 values
logger.debug(f"Skipping APR value for agent {agent_name} ({attr['agent_id']}): {data['apr']} (zero or -100)")
# Process ROI data
if data["roi"] is not None:
# Include all ROI values except extreme outliers
if data["roi"] > -10 and data["roi"] < 10: # Filter extreme outliers
roi_entry = {
"roi": data["roi"],
"timestamp": data["timestamp"],
"agent_id": data["agent_id"],
"agent_name": agent_name,
"is_dummy": False,
"metric_type": "ROI"
}
logger.debug(f"Agent {agent_name} ({attr['agent_id']}): ROI value: {data['roi']}")
# Add to the ROI data list
roi_data_list.append(roi_entry)
else:
# Log that we're skipping extreme outlier values
logger.debug(f"Skipping ROI value for agent {agent_name} ({attr['agent_id']}): {data['roi']} (extreme outlier)")
logger.info(f"Extracted {len(apr_data_list)} valid APR data points and {len(roi_data_list)} valid ROI data points")
# Added debug for adjusted APR data after May 10th
may_10_2025 = datetime(2025, 5, 10)
after_may_10 = [d for d in apr_data_list if d['timestamp'] >= may_10_2025]
with_adjusted_after_may_10 = [d for d in after_may_10 if d['adjusted_apr'] is not None]
logger.info(f"Data points after May 10th, 2025: {len(after_may_10)}")
logger.info(f"Data points with adjusted_apr after May 10th, 2025: {len(with_adjusted_after_may_10)}")
# Log detailed information about when data began
first_adjusted = None
if with_adjusted_after_may_10:
first_adjusted_after = min(with_adjusted_after_may_10, key=lambda x: x['timestamp'])
logger.info(f"First adjusted_apr after May 10th: {first_adjusted_after['timestamp']} (Agent: {first_adjusted_after['agent_id']})")
# Check all data for first adjusted_apr
all_with_adjusted = [d for d in apr_data_list if d['adjusted_apr'] is not None]
if all_with_adjusted:
first_adjusted = min(all_with_adjusted, key=lambda x: x['timestamp'])
logger.info(f"First adjusted_apr ever: {first_adjusted['timestamp']} (Agent: {first_adjusted['agent_id']})")
last_adjusted = max(all_with_adjusted, key=lambda x: x['timestamp'])
logger.info(f"Last adjusted_apr ever: {last_adjusted['timestamp']} (Agent: {last_adjusted['agent_id']})")
# Calculate overall coverage
adjusted_ratio = len(all_with_adjusted) / len(apr_data_list) * 100
logger.info(f"Overall adjusted_apr coverage: {adjusted_ratio:.2f}% ({len(all_with_adjusted)}/{len(apr_data_list)} records)")
# Log per-agent adjusted APR statistics
agent_stats = {}
for record in apr_data_list:
agent_id = record['agent_id']
has_adjusted = record['adjusted_apr'] is not None
if agent_id not in agent_stats:
agent_stats[agent_id] = {'total': 0, 'adjusted': 0}
agent_stats[agent_id]['total'] += 1
if has_adjusted:
agent_stats[agent_id]['adjusted'] += 1
# Log stats for agents with meaningful data
for agent_id, stats in agent_stats.items():
if stats['total'] > 0:
coverage = (stats['adjusted'] / stats['total']) * 100
if coverage > 0: # Only log agents that have at least some adjusted data
logger.info(f"Agent {agent_id}: {coverage:.2f}% adjusted coverage ({stats['adjusted']}/{stats['total']} records)")
# Check for gaps in adjusted APR data
for agent_id in agent_stats:
# Get all records for this agent
agent_records = [r for r in apr_data_list if r['agent_id'] == agent_id]
# Sort by timestamp
agent_records.sort(key=lambda x: x['timestamp'])
# Find where adjusted APR starts and if there are gaps
has_adjusted = False
gap_count = 0
streak_length = 0
for record in agent_records:
if record['adjusted_apr'] is not None:
if not has_adjusted:
has_adjusted = True
logger.info(f"Agent {agent_id}: First adjusted APR at {record['timestamp']}")
streak_length += 1
elif has_adjusted:
# We had adjusted data but now it's missing
gap_count += 1
if streak_length > 0:
logger.warning(f"Agent {agent_id}: Gap in adjusted APR data after {streak_length} consecutive records")
streak_length = 0
if gap_count > 0:
logger.warning(f"Agent {agent_id}: Found {gap_count} gaps in adjusted APR data")
elif has_adjusted:
logger.info(f"Agent {agent_id}: Continuous adjusted APR data with no gaps")
# Provide summary statistics
agents_with_data = sum(1 for stats in agent_stats.values() if stats['adjusted'] > 0)
agents_with_gaps = sum(1 for agent_id in agent_stats if
any(apr_data_list[i]['agent_id'] == agent_id and apr_data_list[i]['adjusted_apr'] is not None and
i+1 < len(apr_data_list) and apr_data_list[i+1]['agent_id'] == agent_id and
apr_data_list[i+1]['adjusted_apr'] is None
for i in range(len(apr_data_list)-1)))
logger.info(f"ADJUSTED APR SUMMARY: {agents_with_data}/{len(agent_stats)} agents have adjusted APR data")
if agents_with_gaps > 0:
logger.warning(f"ATTENTION: {agents_with_gaps} agents have gaps in their adjusted APR data")
logger.warning("These gaps may cause discontinuities in the adjusted APR graph")
else:
logger.info("No gaps detected in adjusted APR data - graph should be continuous")
if len(with_adjusted_after_may_10) == 0 and len(after_may_10) > 0:
logger.warning("No adjusted_apr values found after May 10th, 2025 despite having APR data")
# Log agent IDs with missing adjusted_apr after May 10th
agents_after_may_10 = set(d['agent_id'] for d in after_may_10)
logger.info(f"Agents with data after May 10th: {agents_after_may_10}")
# Check these same agents before May 10th
before_may_10 = [d for d in apr_data_list if d['timestamp'] < may_10_2025]
agents_with_adjusted_before = {d['agent_id'] for d in before_may_10 if d['adjusted_apr'] is not None}
# Agents that had adjusted_apr before but not after
missing_adjusted = agents_with_adjusted_before.intersection(agents_after_may_10)
if missing_adjusted:
logger.warning(f"Agents that had adjusted_apr before May 10th but not after: {missing_adjusted}")
# Find the last valid adjusted_apr date for these agents
for agent_id in missing_adjusted:
agent_data = [d for d in before_may_10 if d['agent_id'] == agent_id and d['adjusted_apr'] is not None]
if agent_data:
last_entry = max(agent_data, key=lambda d: d['timestamp'])
logger.info(f"Agent {agent_id}: Last adjusted_apr on {last_entry['timestamp']} with value {last_entry['adjusted_apr']}")
# Look at the first entry after the cutoff without adjusted_apr
agent_after = [d for d in after_may_10 if d['agent_id'] == agent_id]
if agent_after:
first_after = min(agent_after, key=lambda d: d['timestamp'])
logger.info(f"Agent {agent_id}: First entry after cutoff on {first_after['timestamp']} missing adjusted_apr")
# If the agent data has the 'adjusted_apr_key' field, log that info
if 'adjusted_apr_key' in first_after:
logger.info(f"Agent {agent_id}: Key used for adjusted_apr: {first_after['adjusted_apr_key']}")
# Add debug logic to check for any adjusted_apr after May 10th and which agents have it
elif len(with_adjusted_after_may_10) > 0:
logger.info("Found adjusted_apr values after May 10th, 2025")
# Group by agent and log
agent_counts = {}
for item in with_adjusted_after_may_10:
agent_id = item['agent_id']
if agent_id in agent_counts:
agent_counts[agent_id] += 1
else:
agent_counts[agent_id] = 1
logger.info(f"Agents with adjusted_apr after May 10th: {agent_counts}")
# Log adjusted_apr keys used
keys_used = {item.get('adjusted_apr_key') for item in with_adjusted_after_may_10 if 'adjusted_apr_key' in item}
if keys_used:
logger.info(f"Keys used for adjusted_apr after May 10th: {keys_used}")
# Convert to DataFrames
if not apr_data_list:
logger.error("No valid APR data extracted")
global_df = pd.DataFrame([])
else:
# Convert list of dictionaries to DataFrame for APR
global_df = pd.DataFrame(apr_data_list)
if not roi_data_list:
logger.error("No valid ROI data extracted")
global_roi_df = pd.DataFrame([])
else:
# Convert list of dictionaries to DataFrame for ROI
global_roi_df = pd.DataFrame(roi_data_list)
# Log the resulting dataframe
logger.info(f"Created DataFrame with {len(global_df)} rows")
logger.info(f"DataFrame columns: {global_df.columns.tolist()}")
logger.info(f"APR statistics: min={global_df['apr'].min()}, max={global_df['apr'].max()}, mean={global_df['apr'].mean()}")
# Log adjusted APR statistics if available
if 'adjusted_apr' in global_df.columns and global_df['adjusted_apr'].notna().any():
logger.info(f"Adjusted APR statistics: min={global_df['adjusted_apr'].min()}, max={global_df['adjusted_apr'].max()}, mean={global_df['adjusted_apr'].mean()}")
logger.info(f"Number of records with adjusted_apr: {global_df['adjusted_apr'].notna().sum()} out of {len(global_df)}")
# Log the difference between APR and adjusted APR
valid_rows = global_df[global_df['adjusted_apr'].notna()]
if not valid_rows.empty:
avg_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).mean()
max_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).max()
min_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).min()
logger.info(f"APR vs. adjusted APR difference: avg={avg_diff:.2f}, min={min_diff:.2f}, max={max_diff:.2f}")
# All values are APR type (excluding zero and -100 values)
logger.info("All values are APR type (excluding zero and -100 values)")
logger.info(f"Agents count: {global_df['agent_name'].value_counts().to_dict()}")
# Log the entire dataframe for debugging
logger.debug("Final DataFrame contents:")
for idx, row in global_df.iterrows():
logger.debug(f"Row {idx}: {row.to_dict()}")
# Add this at the end, right before returning
logger.info("Analyzing adjusted_apr data availability...")
log_adjusted_apr_availability(global_df)
return global_df, global_roi_df
except requests.exceptions.RequestException as e:
logger.error(f"API request error: {e}")
global_df = pd.DataFrame([])
global_roi_df = pd.DataFrame([])
return global_df, global_roi_df
except Exception as e:
logger.error(f"Error fetching APR data: {e}")
logger.exception("Exception traceback:")
global_df = pd.DataFrame([])
global_roi_df = pd.DataFrame([])
return global_df, global_roi_df
def log_adjusted_apr_availability(df):
"""
Analyzes and logs detailed information about adjusted_apr data availability.
Args:
df: DataFrame containing the APR data with adjusted_apr column
"""
if df.empty or 'adjusted_apr' not in df.columns:
logger.warning("No adjusted_apr data available for analysis")
return
# Get only rows with valid adjusted_apr values
has_adjusted = df[df['adjusted_apr'].notna()]
if has_adjusted.empty:
logger.warning("No valid adjusted_apr values found in the dataset")
return
# 1. When did adjusted_apr data start?
first_adjusted = has_adjusted['timestamp'].min()
last_adjusted = has_adjusted['timestamp'].max()
logger.info(f"ADJUSTED APR SUMMARY: First data point: {first_adjusted}")
logger.info(f"ADJUSTED APR SUMMARY: Last data point: {last_adjusted}")
logger.info(f"ADJUSTED APR SUMMARY: Data spans {(last_adjusted - first_adjusted).days} days")
# Calculate coverage percentage
total_records = len(df)
records_with_adjusted = len(has_adjusted)
coverage_pct = (records_with_adjusted / total_records) * 100 if total_records > 0 else 0
logger.info(f"ADJUSTED APR SUMMARY: {records_with_adjusted} out of {total_records} records have adjusted_apr ({coverage_pct:.2f}%)")
# 2. How many agents are providing adjusted_apr?
agents_with_adjusted = has_adjusted['agent_id'].unique()
logger.info(f"ADJUSTED APR SUMMARY: {len(agents_with_adjusted)} agents providing adjusted_apr")
logger.info(f"ADJUSTED APR SUMMARY: Agents providing adjusted_apr: {list(agents_with_adjusted)}")
# 3. May 10th cutoff analysis
may_10_2025 = datetime(2025, 5, 10)
before_cutoff = df[df['timestamp'] < may_10_2025]
after_cutoff = df[df['timestamp'] >= may_10_2025]
if not before_cutoff.empty and not after_cutoff.empty:
before_with_adjusted = before_cutoff['adjusted_apr'].notna().sum()
before_pct = (before_with_adjusted / len(before_cutoff)) * 100
after_with_adjusted = after_cutoff['adjusted_apr'].notna().sum()
after_pct = (after_with_adjusted / len(after_cutoff)) * 100
logger.info(f"ADJUSTED APR SUMMARY: Before May 10th: {before_with_adjusted}/{len(before_cutoff)} records with adjusted_apr ({before_pct:.2f}%)")
logger.info(f"ADJUSTED APR SUMMARY: After May 10th: {after_with_adjusted}/{len(after_cutoff)} records with adjusted_apr ({after_pct:.2f}%)")
# Check which agents had data before and after
agents_before = set(before_cutoff[before_cutoff['adjusted_apr'].notna()]['agent_id'].unique())
agents_after = set(after_cutoff[after_cutoff['adjusted_apr'].notna()]['agent_id'].unique())
missing_after = agents_before - agents_after
if missing_after:
logger.warning(f"ADJUSTED APR SUMMARY: {len(missing_after)} agents stopped providing adjusted_apr after May 10th: {list(missing_after)}")
new_after = agents_after - agents_before
if new_after:
logger.info(f"ADJUSTED APR SUMMARY: {len(new_after)} agents started providing adjusted_apr after May 10th: {list(new_after)}")
# 4. Find date ranges for missing adjusted_apr
# Group by agent to analyze per-agent data availability
logger.info("=== DETAILED AGENT ANALYSIS ===")
for agent_id in df['agent_id'].unique():
agent_data = df[df['agent_id'] == agent_id]
agent_name = agent_data['agent_name'].iloc[0] if not agent_data.empty else f"Agent {agent_id}"
# Get the valid adjusted_apr values for this agent
agent_adjusted = agent_data[agent_data['adjusted_apr'].notna()]
if agent_adjusted.empty:
logger.info(f"Agent {agent_name} (ID: {agent_id}): No adjusted_apr data available")
continue
# Get the date range for this agent's data
agent_start = agent_data['timestamp'].min()
agent_end = agent_data['timestamp'].max()
# Get the date range for adjusted_apr data
adjusted_start = agent_adjusted['timestamp'].min()
adjusted_end = agent_adjusted['timestamp'].max()
total_agent_records = len(agent_data)
agent_with_adjusted = len(agent_adjusted)
coverage_pct = (agent_with_adjusted / total_agent_records) * 100 if total_agent_records > 0 else 0
logger.info(f"Agent {agent_name} (ID: {agent_id}): {agent_with_adjusted}/{total_agent_records} records with adjusted_apr ({coverage_pct:.2f}%)")
logger.info(f"Agent {agent_name} (ID: {agent_id}): APR data from {agent_start} to {agent_end}")
logger.info(f"Agent {agent_name} (ID: {agent_id}): Adjusted APR data from {adjusted_start} to {adjusted_end}")
# Calculate if this agent had data before/after May 10th
if not before_cutoff.empty and not after_cutoff.empty:
agent_before = before_cutoff[before_cutoff['agent_id'] == agent_id]
agent_after = after_cutoff[after_cutoff['agent_id'] == agent_id]
has_before = not agent_before.empty and agent_before['adjusted_apr'].notna().any()
has_after = not agent_after.empty and agent_after['adjusted_apr'].notna().any()
if has_before and not has_after:
last_date = agent_before[agent_before['adjusted_apr'].notna()]['timestamp'].max()
logger.warning(f"Agent {agent_name} (ID: {agent_id}): Stopped providing adjusted_apr after May 10th. Last data point: {last_date}")
elif not has_before and has_after:
first_date = agent_after[agent_after['adjusted_apr'].notna()]['timestamp'].min()
logger.info(f"Agent {agent_name} (ID: {agent_id}): Started providing adjusted_apr after May 10th. First data point: {first_date}")
# Check for gaps in adjusted_apr (periods of 24+ hours without data)
if len(agent_adjusted) < 2:
continue
# Sort by timestamp
sorted_data = agent_adjusted.sort_values('timestamp')
# Calculate time differences between consecutive data points
time_diffs = sorted_data['timestamp'].diff()
# Find gaps larger than 24 hours
gaps = sorted_data[time_diffs > pd.Timedelta(hours=24)]
if not gaps.empty:
logger.info(f"Agent {agent_name} (ID: {agent_id}): Found {len(gaps)} gaps in adjusted_apr data")
# Log the gaps
for i, row in gaps.iterrows():
# Find the previous timestamp before the gap
prev_idx = sorted_data.index.get_loc(i) - 1
prev_time = sorted_data.iloc[prev_idx]['timestamp'] if prev_idx >= 0 else None
if prev_time:
gap_start = prev_time
gap_end = row['timestamp']
gap_duration = gap_end - gap_start
logger.info(f"Agent {agent_name} (ID: {agent_id}): Missing adjusted_apr from {gap_start} to {gap_end} ({gap_duration.days} days, {gap_duration.seconds//3600} hours)")
def generate_apr_visualizations():
"""Generate APR visualizations with real data only (no dummy data)"""
global global_df
# Fetch data from database
df, _ = fetch_apr_data_from_db()
# If we got no data at all, return placeholder figures
if df.empty:
logger.info("No APR data available. Using fallback visualization.")
# Create empty visualizations with a message using Plotly
fig = go.Figure()
fig.add_annotation(
x=0.5, y=0.5,
text="No APR data available",
font=dict(size=20),
showarrow=False
)
fig.update_layout(
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
)
# Save as static file for reference
fig.write_html("modius_apr_combined_graph.html")
fig.write_image("modius_apr_combined_graph.png")
csv_file = None
return fig, csv_file
# No longer generating dummy data
# Set global_df for access by other functions
global_df = df
# Save to CSV before creating visualizations
csv_file = save_to_csv(df)
# Only create combined time series graph
combined_fig = create_combined_time_series_graph(df)
return combined_fig, csv_file
def generate_volume_visualizations():
"""Generate volume visualizations with real data only (no dummy data)"""
global global_df
global global_volume_df
# Use the existing APR data which already contains volume
if global_df is None or global_df.empty:
df, _ = fetch_apr_data_from_db()
else:
df = global_df
# Filter for records with volume data
volume_df = df[df['volume'].notna()].copy()
# Set global_volume_df for access by other functions
global_volume_df = volume_df
# If we got no data at all, return placeholder figures
if volume_df.empty:
logger.info("No volume data available. Using fallback visualization.")
# Create empty visualizations with a message using Plotly
fig = go.Figure()
fig.add_annotation(
x=0.5, y=0.5,
text="No volume data available",
font=dict(size=20),
showarrow=False
)
fig.update_layout(
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
)
# Save as static file for reference
fig.write_html("modius_volume_graph.html")
fig.write_image("modius_volume_graph.png")
csv_file = None
return fig, csv_file
# Save to CSV before creating visualizations
csv_file = save_volume_to_csv(volume_df)
# Create combined time series graph for volume
combined_fig = create_combined_volume_time_series_graph(volume_df)
return combined_fig, csv_file
def save_volume_to_csv(df):
"""Save the volume data DataFrame to a CSV file and return the file path"""
if df.empty:
logger.error("No volume data to save to CSV")
return None
# Define the CSV file path
csv_file = "modius_volume_values.csv"
# Save to CSV
df.to_csv(csv_file, index=False)
logger.info(f"Volume data saved to {csv_file}")
return csv_file
def create_combined_volume_time_series_graph(df):
"""Create a time series graph showing volume values across all agents"""
if len(df) == 0:
logger.error("No data to plot combined volume graph")
fig = go.Figure()
fig.add_annotation(
text="No volume data available",
x=0.5, y=0.5,
showarrow=False, font=dict(size=20)
)
return fig
# IMPORTANT: Force data types to ensure consistency
df['volume'] = df['volume'].astype(float) # Ensure volume is float
# Get min and max time for shapes
min_time = df['timestamp'].min()
max_time = df['timestamp'].max()
# Use the actual start date from the data
x_start_date = min_time
# CRITICAL: Log the exact dataframe we're using for plotting to help debug
logger.info(f"Volume Graph data - shape: {df.shape}, columns: {df.columns}")
logger.info(f"Volume Graph data - unique agents: {df['agent_name'].unique().tolist()}")
logger.info(f"Volume Graph data - min volume: {df['volume'].min()}, max volume: {df['volume'].max()}")
# Export full dataframe to CSV for debugging
debug_csv = "debug_volume_data.csv"
df.to_csv(debug_csv)
logger.info(f"Exported volume graph data to {debug_csv} for debugging")
# Create Plotly figure in a clean state
fig = go.Figure()
# Add background shape for volume region
fig.add_shape(
type="rect",
fillcolor="rgba(230, 243, 255, 0.3)",
line=dict(width=0),
y0=0, y1=df['volume'].max() * 1.1, # Use a reasonable upper limit for volume
x0=min_time, x1=max_time,
layer="below"
)
# Add zero line
fig.add_shape(
type="line",
line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0,
x0=min_time, x1=max_time
)
# Group by timestamp and calculate mean volume
avg_volume_data = df.groupby('timestamp')['volume'].mean().reset_index()
# Sort by timestamp
avg_volume_data = avg_volume_data.sort_values('timestamp')
# Log the average volume data
logger.info(f"Calculated average volume data with {len(avg_volume_data)} points")
for idx, row in avg_volume_data.iterrows():
logger.info(f" Average point {idx}: timestamp={row['timestamp']}, avg_volume={row['volume']}")
# Calculate moving average based on a time window (3 days)
# Sort data by timestamp
df_sorted = df.sort_values('timestamp')
# Create a new dataframe for the moving average
avg_volume_data_with_ma = avg_volume_data.copy()
avg_volume_data_with_ma['moving_avg'] = None # Initialize the moving average column
# Define the time window for the moving average (3 days)
time_window = pd.Timedelta(days=3)
logger.info(f"Calculating moving average with time window of {time_window}")
# Calculate the moving averages for each timestamp
for i, row in avg_volume_data_with_ma.iterrows():
current_time = row['timestamp']
window_start = current_time - time_window
# Get all data points within the 3-day time window
window_data = df_sorted[
(df_sorted['timestamp'] >= window_start) &
(df_sorted['timestamp'] <= current_time)
]
# Calculate the average volume for the 3-day time window
if not window_data.empty:
avg_volume_data_with_ma.at[i, 'moving_avg'] = window_data['volume'].mean()
logger.debug(f"Volume time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['volume'].mean()}")
else:
# If no data points in the window, use the current value
avg_volume_data_with_ma.at[i, 'moving_avg'] = row['volume']
logger.debug(f"No data points in time window for {current_time}, using current value {row['volume']}")
logger.info(f"Calculated time-based moving averages with {len(avg_volume_data_with_ma)} points")
# Find the last date where we have valid moving average data
last_valid_ma_date = avg_volume_data_with_ma[avg_volume_data_with_ma['moving_avg'].notna()]['timestamp'].max() if not avg_volume_data_with_ma['moving_avg'].dropna().empty else None
# If we don't have any valid moving average data, use the max time from the original data
last_valid_date = last_valid_ma_date if last_valid_ma_date is not None else df['timestamp'].max()
logger.info(f"Last valid moving average date: {last_valid_ma_date}")
logger.info(f"Using last valid date for graph: {last_valid_date}")
# Plot individual agent data points with agent names in hover, but limit display for scalability
if not df.empty:
# Group by agent to use different colors for each agent
unique_agents = df['agent_name'].unique()
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
# Create a color map for agents
color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)}
# Calculate the total number of data points per agent to determine which are most active
agent_counts = df['agent_name'].value_counts()
# Determine how many agents to show individually (limit to top 5 most active)
MAX_VISIBLE_AGENTS = 5
top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist()
logger.info(f"Showing {len(top_agents)} agents by default out of {len(unique_agents)} total agents")
# Add data points for each agent, but only make top agents visible by default
for agent_name in unique_agents:
agent_data = df[df['agent_name'] == agent_name]
# Explicitly convert to Python lists
x_values = agent_data['timestamp'].tolist()
y_values = agent_data['volume'].tolist()
# Change default visibility to False to hide all agent data points
is_visible = False
# Add data points as markers for volume
fig.add_trace(
go.Scatter(
x=x_values,
y=y_values,
mode='markers', # Only markers for original data
marker=dict(
color=color_map[agent_name],
symbol='circle',
size=10,
line=dict(width=1, color='black')
),
name=f'Agent: {agent_name} (Volume)',
hovertemplate='Time: %{x}<br>Volume: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
visible=is_visible # All agents hidden by default
)
)
logger.info(f"Added volume data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})")
# Add volume moving average as a smooth line
x_values_ma = avg_volume_data_with_ma['timestamp'].tolist()
y_values_ma = avg_volume_data_with_ma['moving_avg'].tolist()
# Create hover template for the volume moving average line
hover_data_volume = []
for idx, row in avg_volume_data_with_ma.iterrows():
timestamp = row['timestamp']
# Format timestamp to show only up to seconds (not milliseconds)
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
# Calculate number of active agents in the last 24 hours
time_24h_ago = timestamp - pd.Timedelta(hours=24)
active_agents = len(df[(df['timestamp'] >= time_24h_ago) &
(df['timestamp'] <= timestamp)]['agent_id'].unique())
hover_data_volume.append(
f"Time: {formatted_timestamp}<br>Avg Volume (3d window): {row['moving_avg']:.2f}<br>Active agents (24h): {active_agents}"
)
fig.add_trace(
go.Scatter(
x=x_values_ma,
y=y_values_ma,
mode='lines', # Only lines for moving average
line=dict(color='purple', width=2), # Purple line for volume
name='Average Volume (3d window)',
hovertext=hover_data_volume,
hoverinfo='text',
visible=True # Visible by default
)
)
logger.info(f"Added 3-day moving average volume trace with {len(x_values_ma)} points")
# Update layout
fig.update_layout(
title=dict(
text="Modius Agents Volume",
font=dict(
family="Arial, sans-serif",
size=22,
color="black",
weight="bold"
)
),
xaxis_title=None, # Remove x-axis title to use annotation instead
yaxis_title=None, # Remove the y-axis title as we'll use annotations instead
template="plotly_white",
height=600, # Reduced height for better fit on smaller screens
autosize=True, # Enable auto-sizing for responsiveness
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
groupclick="toggleitem"
),
margin=dict(r=30, l=120, t=40, b=50), # Increased bottom margin for x-axis title
hovermode="closest"
)
# Add single annotation for y-axis
fig.add_annotation(
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels
y=df['volume'].max() / 2, # Center of the y-axis
xref="paper",
yref="y",
text="Volume",
showarrow=False,
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
textangle=-90, # Rotate text to be vertical
align="center"
)
# Update layout for legend
fig.update_layout(
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
groupclick="toggleitem",
font=dict(
family="Arial, sans-serif",
size=14, # Adjusted font size
color="black",
weight="bold"
)
)
)
# Update y-axis with autoscaling for volume
fig.update_yaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
autorange=True, # Enable autoscaling for volume
tickformat=".2f", # Format tick labels with 2 decimal places
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
title=None # Remove the built-in axis title since we're using annotations
)
# Update x-axis with better formatting and fixed range
fig.update_xaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
# Set fixed range with start date and ending at the last valid date
autorange=False, # Disable autoscaling
range=[x_start_date, last_valid_date], # Set fixed range from start date to last valid date
tickformat="%b %d", # Simplified date format without time
tickangle=-30, # Angle the labels for better readability
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
title=None # Remove built-in title to use annotation instead
)
try:
# Save the figure
graph_file = "modius_volume_graph.html"
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Also save as image for compatibility
img_file = "modius_volume_graph.png"
try:
fig.write_image(img_file)
logger.info(f"Volume graph saved to {graph_file} and {img_file}")
except Exception as e:
logger.error(f"Error saving volume image: {e}")
logger.info(f"Volume graph saved to {graph_file} only")
# Return the figure object for direct use in Gradio
return fig
except Exception as e:
# If the complex graph approach fails, create a simpler one
logger.error(f"Error creating advanced volume graph: {e}")
logger.info("Falling back to simpler volume graph")
# Create a simpler graph as fallback
simple_fig = go.Figure()
# Add zero line
simple_fig.add_shape(
type="line",
line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0,
x0=min_time, x1=max_time
)
# Simply plot the average volume data with moving average
if not avg_volume_data.empty:
# Add moving average as a line
simple_fig.add_trace(
go.Scatter(
x=avg_volume_data_with_ma['timestamp'],
y=avg_volume_data_with_ma['moving_avg'],
mode='lines',
name='Average Volume (3d window)',
line=dict(width=2, color='purple') # Purple line for volume
)
)
# Simplified layout with adjusted y-axis range
simple_fig.update_layout(
title=dict(
text="Modius Agents Volume",
font=dict(
family="Arial, sans-serif",
size=22,
color="black",
weight="bold"
)
),
xaxis_title=None,
yaxis_title=None,
template="plotly_white",
height=600,
autosize=True,
margin=dict(r=30, l=120, t=40, b=50)
)
# Update y-axis with autoscaling for volume
simple_fig.update_yaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
autorange=True, # Enable autoscaling for volume
tickformat=".2f",
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"),
title=None # Remove the built-in axis title since we're using annotations
)
# Update x-axis with better formatting and fixed range
simple_fig.update_xaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
autorange=False,
range=[x_start_date, max_time],
tickformat="%b %d",
tickangle=-30,
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold")
)
# Save the figure
graph_file = "modius_volume_graph.html"
simple_fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Return the simple figure
return simple_fig
def generate_roi_visualizations():
"""Generate ROI visualizations with real data only (no dummy data)"""
global global_roi_df
# Fetch data from database if not already fetched
if global_roi_df is None or global_roi_df.empty:
_, df_roi = fetch_apr_data_from_db()
else:
df_roi = global_roi_df
# If we got no data at all, return placeholder figures
if df_roi.empty:
logger.info("No ROI data available. Using fallback visualization.")
# Create empty visualizations with a message using Plotly
fig = go.Figure()
fig.add_annotation(
x=0.5, y=0.5,
text="No ROI data available",
font=dict(size=20),
showarrow=False
)
fig.update_layout(
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
)
# Save as static file for reference
fig.write_html("modius_roi_graph.html")
fig.write_image("modius_roi_graph.png")
csv_file = None
return fig, csv_file
# Set global_roi_df for access by other functions
global_roi_df = df_roi
# Save to CSV before creating visualizations
csv_file = save_roi_to_csv(df_roi)
# Create combined time series graph for ROI
combined_fig = create_combined_roi_time_series_graph(df_roi)
return combined_fig, csv_file
def create_combined_roi_time_series_graph(df):
"""Create a time series graph showing average ROI values across all agents"""
if len(df) == 0:
logger.error("No data to plot combined ROI graph")
fig = go.Figure()
fig.add_annotation(
text="No ROI data available",
x=0.5, y=0.5,
showarrow=False, font=dict(size=20)
)
return fig
# Define fixed start date (February 1, 2025)
fixed_start_date = datetime(2025, 2, 1)
logger.info(f"Using fixed start date for ROI runtime calculation: {fixed_start_date}")
# Calculate runtime for each agent from fixed start date
agent_runtimes = {}
for agent_id in df['agent_id'].unique():
agent_data = df[df['agent_id'] == agent_id]
agent_name = agent_data['agent_name'].iloc[0]
last_report = agent_data['timestamp'].max()
runtime_days = (last_report - fixed_start_date).total_seconds() / (24 * 3600) # Convert to days
agent_runtimes[agent_id] = {
'agent_name': agent_name,
'last_report': last_report,
'runtime_days': runtime_days
}
# Calculate average runtime
avg_runtime = sum(data['runtime_days'] for data in agent_runtimes.values()) / len(agent_runtimes) if agent_runtimes else 0
logger.info(f"Average agent runtime from fixed start date: {avg_runtime:.2f} days")
# Log individual agent runtimes for debugging
for agent_id, data in agent_runtimes.items():
logger.info(f"Agent {data['agent_name']} (ID: {agent_id}): Runtime = {data['runtime_days']:.2f} days, Last report: {data['last_report']}")
# IMPORTANT: Force data types to ensure consistency
df['roi'] = df['roi'].astype(float) # Ensure ROI is float
# Convert ROI values to percentages (multiply by 100)
df['roi'] = df['roi'] * 100
df['metric_type'] = df['metric_type'].astype(str) # Ensure metric_type is string
# Get min and max time for shapes
min_time = df['timestamp'].min()
max_time = df['timestamp'].max()
# Use the actual start date from the data instead of a fixed date
x_start_date = min_time
# CRITICAL: Log the exact dataframe we're using for plotting to help debug
logger.info(f"ROI Graph data - shape: {df.shape}, columns: {df.columns}")
logger.info(f"ROI Graph data - unique agents: {df['agent_name'].unique().tolist()}")
logger.info(f"ROI Graph data - min ROI: {df['roi'].min()}, max ROI: {df['roi'].max()}")
# Export full dataframe to CSV for debugging
debug_csv = "debug_roi_data.csv"
df.to_csv(debug_csv)
logger.info(f"Exported ROI graph data to {debug_csv} for debugging")
# Create Plotly figure in a clean state
fig = go.Figure()
# Get min and max time for shapes
min_time = df['timestamp'].min()
max_time = df['timestamp'].max()
# Add background shapes for positive and negative regions
# Add shape for positive ROI region (above zero)
fig.add_shape(
type="rect",
fillcolor="rgba(230, 243, 255, 0.3)",
line=dict(width=0),
y0=0, y1=100, # Use a fixed positive value (percentage)
x0=min_time, x1=max_time,
layer="below"
)
# Add shape for negative ROI region (below zero)
fig.add_shape(
type="rect",
fillcolor="rgba(255, 230, 230, 0.3)",
line=dict(width=0),
y0=-100, y1=0, # Use a fixed negative value (percentage)
x0=min_time, x1=max_time,
layer="below"
)
# Add zero line
fig.add_shape(
type="line",
line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0,
x0=min_time, x1=max_time
)
# Filter out outliers (ROI values above 200% or below -200%)
outlier_data = df[(df['roi'] > 200) | (df['roi'] < -200)].copy()
df_filtered = df[(df['roi'] <= 200) & (df['roi'] >= -200)].copy()
# Log the outliers for better debugging
if len(outlier_data) > 0:
excluded_count = len(outlier_data)
logger.info(f"Excluded {excluded_count} data points with outlier ROI values (>200% or <-200%)")
# Group outliers by agent for detailed logging
outlier_agents = outlier_data.groupby('agent_name')
for agent_name, agent_outliers in outlier_agents:
logger.info(f"Agent '{agent_name}' has {len(agent_outliers)} outlier values:")
for idx, row in agent_outliers.iterrows():
logger.info(f" - ROI: {row['roi']}, timestamp: {row['timestamp']}")
# Use the filtered data for all subsequent operations
df = df_filtered
# Group by timestamp and calculate mean ROI
avg_roi_data = df.groupby('timestamp')['roi'].mean().reset_index()
# Sort by timestamp
avg_roi_data = avg_roi_data.sort_values('timestamp')
# Log the average ROI data
logger.info(f"Calculated average ROI data with {len(avg_roi_data)} points")
for idx, row in avg_roi_data.iterrows():
logger.info(f" Average point {idx}: timestamp={row['timestamp']}, avg_roi={row['roi']}")
# Calculate moving average based on a time window (3 days)
# Sort data by timestamp
df_sorted = df.sort_values('timestamp')
# Create a new dataframe for the moving average
avg_roi_data_with_ma = avg_roi_data.copy()
avg_roi_data_with_ma['moving_avg'] = None # Initialize the moving average column
# Define the time window for the moving average (3 days)
time_window = pd.Timedelta(days=3)
logger.info(f"Calculating moving average with time window of {time_window}")
# Calculate the moving averages for each timestamp
for i, row in avg_roi_data_with_ma.iterrows():
current_time = row['timestamp']
window_start = current_time - time_window
# Get all data points within the 3-day time window
window_data = df_sorted[
(df_sorted['timestamp'] >= window_start) &
(df_sorted['timestamp'] <= current_time)
]
# Calculate the average ROI for the 3-day time window
if not window_data.empty:
avg_roi_data_with_ma.at[i, 'moving_avg'] = window_data['roi'].mean()
logger.debug(f"ROI time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['roi'].mean()}")
else:
# If no data points in the window, use the current value
avg_roi_data_with_ma.at[i, 'moving_avg'] = row['roi']
logger.debug(f"No data points in time window for {current_time}, using current value {row['roi']}")
logger.info(f"Calculated time-based moving averages with {len(avg_roi_data_with_ma)} points")
# Find the last date where we have valid moving average data
last_valid_ma_date = avg_roi_data_with_ma[avg_roi_data_with_ma['moving_avg'].notna()]['timestamp'].max() if not avg_roi_data_with_ma['moving_avg'].dropna().empty else None
# If we don't have any valid moving average data, use the max time from the original data
last_valid_date = last_valid_ma_date if last_valid_ma_date is not None else df['timestamp'].max()
logger.info(f"Last valid moving average date: {last_valid_ma_date}")
logger.info(f"Using last valid date for graph: {last_valid_date}")
# Plot individual agent data points with agent names in hover, but limit display for scalability
if not df.empty:
# Group by agent to use different colors for each agent
unique_agents = df['agent_name'].unique()
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
# Create a color map for agents
color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)}
# Calculate the total number of data points per agent to determine which are most active
agent_counts = df['agent_name'].value_counts()
# Determine how many agents to show individually (limit to top 5 most active)
MAX_VISIBLE_AGENTS = 5
top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist()
logger.info(f"Showing {len(top_agents)} agents by default out of {len(unique_agents)} total agents")
# Add data points for each agent, but only make top agents visible by default
for agent_name in unique_agents:
agent_data = df[df['agent_name'] == agent_name]
# Explicitly convert to Python lists
x_values = agent_data['timestamp'].tolist()
y_values = agent_data['roi'].tolist()
# Change default visibility to False to hide all agent data points
is_visible = False
# Add data points as markers for ROI
fig.add_trace(
go.Scatter(
x=x_values,
y=y_values,
mode='markers', # Only markers for original data
marker=dict(
color=color_map[agent_name],
symbol='circle',
size=10,
line=dict(width=1, color='black')
),
name=f'Agent: {agent_name} (ROI)',
hovertemplate='Time: %{x}<br>ROI: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
visible=is_visible # All agents hidden by default
)
)
logger.info(f"Added ROI data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})")
# Add ROI moving average as a smooth line
x_values_ma = avg_roi_data_with_ma['timestamp'].tolist()
y_values_ma = avg_roi_data_with_ma['moving_avg'].tolist()
# Create hover template for the ROI moving average line
hover_data_roi = []
for idx, row in avg_roi_data_with_ma.iterrows():
timestamp = row['timestamp']
# Format timestamp to show only up to seconds (not milliseconds)
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
# Calculate number of active agents in the last 24 hours
time_24h_ago = timestamp - pd.Timedelta(hours=24)
active_agents = len(df[(df['timestamp'] >= time_24h_ago) &
(df['timestamp'] <= timestamp)]['agent_id'].unique())
hover_data_roi.append(
f"Time: {formatted_timestamp}<br>Avg ROI (3d window): {row['moving_avg']:.2f}%<br>Active agents (24h): {active_agents}"
)
fig.add_trace(
go.Scatter(
x=x_values_ma,
y=y_values_ma,
mode='lines', # Only lines for moving average
line=dict(color='blue', width=2), # Thinner line
name='Average ROI (3d window)',
hovertext=hover_data_roi,
hoverinfo='text',
visible=True # Visible by default
)
)
logger.info(f"Added 3-day moving average ROI trace with {len(x_values_ma)} points")
# Update layout with average runtime information in the title
fig.update_layout(
title=dict(
text=f"Modius Agents ROI (over avg. {avg_runtime:.1f} days runtime)",
font=dict(
family="Arial, sans-serif",
size=22,
color="black",
weight="bold"
)
),
xaxis_title=None, # Remove x-axis title to use annotation instead
yaxis_title=None, # Remove the y-axis title as we'll use annotations instead
template="plotly_white",
height=600, # Reduced height for better fit on smaller screens
autosize=True, # Enable auto-sizing for responsiveness
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
groupclick="toggleitem"
),
margin=dict(r=30, l=120, t=40, b=50), # Increased bottom margin for x-axis title
hovermode="closest"
)
# Add single annotation for y-axis
fig.add_annotation(
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels
y=0, # Center of the y-axis
xref="paper",
yref="y",
text="ROI [%]",
showarrow=False,
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
textangle=-90, # Rotate text to be vertical
align="center"
)
# Update layout for legend
fig.update_layout(
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
groupclick="toggleitem",
font=dict(
family="Arial, sans-serif",
size=14, # Adjusted font size
color="black",
weight="bold"
)
)
)
# Update y-axis with fixed range of -100% to +100% for ROI
fig.update_yaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
# Use fixed range instead of autoscaling
autorange=False, # Disable autoscaling
range=[-100, 100], # Set fixed range from -100% to +100%
tickformat=".2f", # Format tick labels with 2 decimal places
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
title=None # Remove the built-in axis title since we're using annotations
)
# Update x-axis with better formatting and fixed range
fig.update_xaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
# Set fixed range with start date and ending at the last valid date
autorange=False, # Disable autoscaling
range=[x_start_date, last_valid_date], # Set fixed range from start date to last valid date
tickformat="%b %d", # Simplified date format without time
tickangle=-30, # Angle the labels for better readability
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
title=None # Remove built-in title to use annotation instead
)
try:
# Save the figure
graph_file = "modius_roi_graph.html"
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Also save as image for compatibility
img_file = "modius_roi_graph.png"
try:
fig.write_image(img_file)
logger.info(f"ROI graph saved to {graph_file} and {img_file}")
except Exception as e:
logger.error(f"Error saving ROI image: {e}")
logger.info(f"ROI graph saved to {graph_file} only")
# Return the figure object for direct use in Gradio
return fig
except Exception as e:
# If the complex graph approach fails, create a simpler one
logger.error(f"Error creating advanced ROI graph: {e}")
logger.info("Falling back to Simpler ROI graph")
# Create a simpler graph as fallback
simple_fig = go.Figure()
# Add zero line
simple_fig.add_shape(
type="line",
line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0,
x0=min_time, x1=max_time
)
# Simply plot the average ROI data with moving average
if not avg_roi_data.empty:
# Add moving average as a line
simple_fig.add_trace(
go.Scatter(
x=avg_roi_data_with_ma['timestamp'],
y=avg_roi_data_with_ma['moving_avg'],
mode='lines',
name='Average ROI (3d window)',
line=dict(width=2, color='blue') # Thinner line
)
)
# Simplified layout with adjusted y-axis range
simple_fig.update_layout(
title=dict(
text="Modius Agents ROI",
font=dict(
family="Arial, sans-serif",
size=22,
color="black",
weight="bold"
)
),
xaxis_title=None,
yaxis_title=None,
template="plotly_white",
height=600,
autosize=True,
margin=dict(r=30, l=120, t=40, b=50)
)
# Update y-axis with fixed range of -100% to +100% for ROI
simple_fig.update_yaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
autorange=False,
range=[-100, 100],
tickformat=".2f",
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"),
title=None # Remove the built-in axis title since we're using annotations
)
# Update x-axis with better formatting and fixed range
simple_fig.update_xaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
autorange=False,
range=[x_start_date, max_time],
tickformat="%b %d",
tickangle=-30,
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold")
)
# Save the figure
graph_file = "modius_roi_graph.html"
simple_fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Return the simple figure
return simple_fig
def save_roi_to_csv(df):
"""Save the ROI data DataFrame to a CSV file and return the file path"""
if df.empty:
logger.error("No ROI data to save to CSV")
return None
# Define the CSV file path
csv_file = "modius_roi_values.csv"
# Save to CSV
df.to_csv(csv_file, index=False)
logger.info(f"ROI data saved to {csv_file}")
return csv_file
def create_time_series_graph_per_agent(df):
"""Create a time series graph for each agent using Plotly"""
# Get unique agents
unique_agents = df['agent_id'].unique()
if len(unique_agents) == 0:
logger.error("No agent data to plot")
fig = go.Figure()
fig.add_annotation(
text="No agent data available",
x=0.5, y=0.5,
showarrow=False, font=dict(size=20)
)
return fig
# Create a subplot figure for each agent
fig = make_subplots(rows=len(unique_agents), cols=1,
subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}"
for agent_id in unique_agents],
vertical_spacing=0.1)
# Plot data for each agent
for i, agent_id in enumerate(unique_agents):
agent_data = df[df['agent_id'] == agent_id].copy()
agent_name = agent_data['agent_name'].iloc[0]
row = i + 1
# Add zero line to separate APR and Performance
fig.add_shape(
type="line", line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
row=row, col=1
)
# Add background colors
fig.add_shape(
type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0),
y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
row=row, col=1, layer="below"
)
fig.add_shape(
type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0),
y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
row=row, col=1, layer="below"
)
# Create separate dataframes for different data types
apr_data = agent_data[agent_data['metric_type'] == 'APR']
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
# Sort all data by timestamp for the line plots
combined_agent_data = agent_data.sort_values('timestamp')
# Add main line connecting all points
fig.add_trace(
go.Scatter(
x=combined_agent_data['timestamp'],
y=combined_agent_data['apr'],
mode='lines',
line=dict(color='purple', width=2),
name=f'{agent_name}',
legendgroup=agent_name,
showlegend=(i == 0), # Only show in legend once
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
),
row=row, col=1
)
# Add scatter points for APR values
if not apr_data.empty:
fig.add_trace(
go.Scatter(
x=apr_data['timestamp'],
y=apr_data['apr'],
mode='markers',
marker=dict(color='blue', size=10, symbol='circle'),
name='APR',
legendgroup='APR',
showlegend=(i == 0),
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>'
),
row=row, col=1
)
# Add scatter points for Performance values
if not perf_data.empty:
fig.add_trace(
go.Scatter(
x=perf_data['timestamp'],
y=perf_data['apr'],
mode='markers',
marker=dict(color='red', size=10, symbol='square'),
name='Performance',
legendgroup='Performance',
showlegend=(i == 0),
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>'
),
row=row, col=1
)
# Update axes
fig.update_xaxes(title_text="Time", row=row, col=1)
fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)')
# Update layout
fig.update_layout(
height=400 * len(unique_agents),
width=1000,
title_text="APR and Performance Values per Agent",
template="plotly_white",
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
),
margin=dict(r=20, l=20, t=30, b=20),
hovermode="closest"
)
# Save the figure (still useful for reference)
graph_file = "modius_apr_per_agent_graph.html"
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Also save as image for compatibility
img_file = "modius_apr_per_agent_graph.png"
fig.write_image(img_file)
logger.info(f"Per-agent graph saved to {graph_file} and {img_file}")
# Return the figure object for direct use in Gradio
return fig
def write_debug_info(df, fig):
"""Minimal debug info function"""
try:
# Just log minimal information
logger.debug(f"Graph created with {len(df)} data points and {len(fig.data)} traces")
return True
except Exception as e:
logger.error(f"Error writing debug info: {e}")
return False
def create_combined_time_series_graph(df):
"""Create a time series graph showing average APR values across all agents"""
if len(df) == 0:
logger.error("No data to plot combined graph")
fig = go.Figure()
fig.add_annotation(
text="No data available",
x=0.5, y=0.5,
showarrow=False, font=dict(size=20)
)
return fig
# IMPORTANT: Force data types to ensure consistency
df['apr'] = df['apr'].astype(float) # Ensure APR is float
df['metric_type'] = df['metric_type'].astype(str) # Ensure metric_type is string
# Get min and max time for shapes
min_time = df['timestamp'].min()
max_time = df['timestamp'].max()
# Use April 17th, 2025 as the fixed start date for APR graph
x_start_date = datetime(2025, 4, 17)
# CRITICAL: Log the exact dataframe we're using for plotting to help debug
logger.info(f"Graph data - shape: {df.shape}, columns: {df.columns}")
logger.info(f"Graph data - unique agents: {df['agent_name'].unique().tolist()}")
logger.info("Graph data - all positive APR values only")
logger.info(f"Graph data - min APR: {df['apr'].min()}, max APR: {df['apr'].max()}")
# Export full dataframe to CSV for debugging
debug_csv = "debug_graph_data.csv"
df.to_csv(debug_csv)
logger.info(f"Exported graph data to {debug_csv} for debugging")
# Write detailed data report
with open("debug_graph_data_report.txt", "w") as f:
f.write("==== GRAPH DATA REPORT ====\n\n")
f.write(f"Total data points: {len(df)}\n")
f.write(f"Timestamp range: {df['timestamp'].min()} to {df['timestamp'].max()}\n\n")
# Output per-agent details
unique_agents = df['agent_id'].unique()
f.write(f"Number of agents: {len(unique_agents)}\n\n")
for agent_id in unique_agents:
agent_data = df[df['agent_id'] == agent_id]
agent_name = agent_data['agent_name'].iloc[0]
f.write(f"== Agent: {agent_name} (ID: {agent_id}) ==\n")
f.write(f" Total data points: {len(agent_data)}\n")
apr_data = agent_data[agent_data['metric_type'] == 'APR']
f.write(f" APR data points: {len(apr_data)}\n")
if not apr_data.empty:
f.write(f" APR values: {apr_data['apr'].tolist()}\n")
f.write(f" APR timestamps: {[ts.strftime('%Y-%m-%d %H:%M:%S') if ts is not None else 'None' for ts in apr_data['timestamp']]}\n")
f.write("\n")
logger.info("Generated detailed graph data report")
# ENSURE THERE ARE NO CONFLICTING AXES OR TRACES
# Create Plotly figure in a clean state
fig = go.Figure()
# Enable autoscaling instead of fixed ranges
logger.info("Using autoscaling for axes ranges")
# Add background shapes for APR and Performance regions
min_time = df['timestamp'].min()
max_time = df['timestamp'].max()
# Add shape for positive APR region (above zero)
fig.add_shape(
type="rect",
fillcolor="rgba(230, 243, 255, 0.3)",
line=dict(width=0),
y0=0, y1=100, # Use a fixed positive value
x0=min_time, x1=max_time,
layer="below"
)
# Add shape for negative APR region (below zero)
fig.add_shape(
type="rect",
fillcolor="rgba(255, 230, 230, 0.3)",
line=dict(width=0),
y0=-100, y1=0, # Use a fixed negative value
x0=min_time, x1=max_time,
layer="below"
)
# Add zero line
fig.add_shape(
type="line",
line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0,
x0=min_time, x1=max_time
)
# MODIFIED: Calculate average APR values across all agents for each timestamp
# Filter for APR data only
apr_data = df[df['metric_type'] == 'APR'].copy()
# Filter out outliers (APR values above 200 or below -200)
outlier_data = apr_data[(apr_data['apr'] > 200) | (apr_data['apr'] < -200)].copy()
apr_data_filtered = apr_data[(apr_data['apr'] <= 200) & (apr_data['apr'] >= -200)].copy()
# Log the outliers for better debugging
if len(outlier_data) > 0:
excluded_count = len(outlier_data)
logger.info(f"Excluded {excluded_count} data points with outlier APR values (>200 or <-200)")
# Group outliers by agent for detailed logging
outlier_agents = outlier_data.groupby('agent_name')
for agent_name, agent_outliers in outlier_agents:
logger.info(f"Agent '{agent_name}' has {len(agent_outliers)} outlier values:")
for idx, row in agent_outliers.iterrows():
logger.info(f" - APR: {row['apr']}, timestamp: {row['timestamp']}")
# Use the filtered data for all subsequent operations
apr_data = apr_data_filtered
# Group by timestamp and calculate mean APR
avg_apr_data = apr_data.groupby('timestamp')['apr'].mean().reset_index()
# Sort by timestamp
avg_apr_data = avg_apr_data.sort_values('timestamp')
# Log the average APR data
logger.info(f"Calculated average APR data with {len(avg_apr_data)} points")
for idx, row in avg_apr_data.iterrows():
logger.info(f" Average point {idx}: timestamp={row['timestamp']}, avg_apr={row['apr']}")
# Calculate moving average based on a time window (2 hours)
# Sort data by timestamp
apr_data_sorted = apr_data.sort_values('timestamp')
# Create a new dataframe for the moving average
avg_apr_data_with_ma = avg_apr_data.copy()
avg_apr_data_with_ma['moving_avg'] = None # Initialize the moving average column
# Define the time window for the moving average (3 days)
time_window = pd.Timedelta(days=3)
logger.info(f"Calculating moving average with time window of {time_window}")
# Calculate moving averages: one for APR and one for adjusted APR
avg_apr_data_with_ma['moving_avg'] = None # 3-day window for APR
avg_apr_data_with_ma['adjusted_moving_avg'] = None # 3-day window for adjusted APR
# Keep track of the last valid adjusted_moving_avg value to handle gaps
last_valid_adjusted_moving_avg = None
# Calculate the moving averages for each timestamp
for i, row in avg_apr_data_with_ma.iterrows():
current_time = row['timestamp']
window_start = current_time - time_window
# Get all data points within the 3-day time window
window_data = apr_data_sorted[
(apr_data_sorted['timestamp'] >= window_start) &
(apr_data_sorted['timestamp'] <= current_time)
]
# Calculate the average APR for the 3-day time window
if not window_data.empty:
avg_apr_data_with_ma.at[i, 'moving_avg'] = window_data['apr'].mean()
logger.debug(f"APR time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['apr'].mean()}")
# Calculate adjusted APR moving average if data exists
has_adjusted_apr = 'adjusted_apr' in window_data.columns and window_data['adjusted_apr'].notna().any()
if has_adjusted_apr:
adjusted_avg = window_data['adjusted_apr'].dropna().mean()
avg_apr_data_with_ma.at[i, 'adjusted_moving_avg'] = adjusted_avg
last_valid_adjusted_moving_avg = adjusted_avg
logger.debug(f"Adjusted APR time window {window_start} to {current_time}: {len(window_data)} points, avg={adjusted_avg}")
else:
# If we don't have adjusted_apr data in this window but had some previously,
# use the last valid value to maintain continuity in the graph
if last_valid_adjusted_moving_avg is not None:
avg_apr_data_with_ma.at[i, 'adjusted_moving_avg'] = last_valid_adjusted_moving_avg
logger.debug(f"No adjusted APR data in window, using last valid value: {last_valid_adjusted_moving_avg}")
else:
# If no data points in the window, use the current value
avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr']
logger.debug(f"No data points in time window for {current_time}, using current value {row['apr']}")
logger.info(f"Calculated time-based moving averages with {len(avg_apr_data_with_ma)} points")
# Find the last date where we have valid moving average data
last_valid_ma_date = avg_apr_data_with_ma[avg_apr_data_with_ma['moving_avg'].notna()]['timestamp'].max() if not avg_apr_data_with_ma['moving_avg'].dropna().empty else None
# Find the last date where we have valid adjusted moving average data
last_valid_adj_ma_date = None
if 'adjusted_moving_avg' in avg_apr_data_with_ma.columns and avg_apr_data_with_ma['adjusted_moving_avg'].notna().any():
last_valid_adj_ma_date = avg_apr_data_with_ma[avg_apr_data_with_ma['adjusted_moving_avg'].notna()]['timestamp'].max()
# Determine the last valid date for either moving average
last_valid_date = last_valid_ma_date
if last_valid_adj_ma_date is not None:
last_valid_date = max(last_valid_date, last_valid_adj_ma_date) if last_valid_date is not None else last_valid_adj_ma_date
# If we don't have any valid moving average data, use the max time from the original data
if last_valid_date is None:
last_valid_date = df['timestamp'].max()
logger.info(f"Last valid moving average date: {last_valid_ma_date}")
logger.info(f"Last valid adjusted moving average date: {last_valid_adj_ma_date}")
logger.info(f"Using last valid date for graph: {last_valid_date}")
# Plot individual agent data points with agent names in hover, but limit display for scalability
if not apr_data.empty:
# Group by agent to use different colors for each agent
unique_agents = apr_data['agent_name'].unique()
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
# Create a color map for agents
color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)}
# Calculate the total number of data points per agent to determine which are most active
agent_counts = apr_data['agent_name'].value_counts()
# Determine how many agents to show individually (limit to top 5 most active)
MAX_VISIBLE_AGENTS = 5
top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist()
logger.info(f"Showing {len(top_agents)} agents by default out of {len(unique_agents)} total agents")
# Add data points for each agent, but only make top agents visible by default
for agent_name in unique_agents:
agent_data = apr_data[apr_data['agent_name'] == agent_name]
# Explicitly convert to Python lists
x_values = agent_data['timestamp'].tolist()
y_values = agent_data['apr'].tolist()
# Change default visibility to False to hide all agent data points
is_visible = False
# Add data points as markers for APR
fig.add_trace(
go.Scatter(
x=x_values,
y=y_values,
mode='markers', # Only markers for original data
marker=dict(
color=color_map[agent_name],
symbol='circle',
size=10,
line=dict(width=1, color='black')
),
name=f'Agent: {agent_name} (APR)',
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
visible=is_visible # All agents hidden by default
)
)
logger.info(f"Added APR data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})")
# Add data points for adjusted APR if it exists
if 'adjusted_apr' in agent_data.columns and agent_data['adjusted_apr'].notna().any():
x_values_adj = agent_data['timestamp'].tolist()
y_values_adj = agent_data['adjusted_apr'].tolist()
fig.add_trace(
go.Scatter(
x=x_values_adj,
y=y_values_adj,
mode='markers', # Only markers for original data
marker=dict(
color=color_map[agent_name],
symbol='diamond', # Different symbol for adjusted APR
size=10,
line=dict(width=1, color='black')
),
name=f'Agent: {agent_name} (Adjusted APR)',
hovertemplate='Time: %{x}<br>Adjusted APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
visible=is_visible # All agents hidden by default
)
)
logger.info(f"Added Adjusted APR data points for agent {agent_name} with {len(x_values_adj)} points (visible: {is_visible})")
# Add APR moving average as a smooth line
x_values_ma = avg_apr_data_with_ma['timestamp'].tolist()
y_values_ma = avg_apr_data_with_ma['moving_avg'].tolist()
# Create hover template for the APR moving average line
hover_data_apr = []
for idx, row in avg_apr_data_with_ma.iterrows():
timestamp = row['timestamp']
# Format timestamp to show only up to seconds (not milliseconds)
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
# Calculate number of active agents in the last 24 hours
# Use ROI data after April 25th, 2025, and APR data before that date
time_24h_ago = timestamp - pd.Timedelta(hours=24)
april_25_2025 = datetime(2025, 4, 25)
if timestamp >= april_25_2025 and global_roi_df is not None and not global_roi_df.empty:
# After April 25th, 2025: Use ROI data
roi_window_data = global_roi_df[(global_roi_df['timestamp'] >= time_24h_ago) &
(global_roi_df['timestamp'] <= timestamp)]
active_agents = len(roi_window_data['agent_id'].unique())
logger.debug(f"Using ROI data for active agent count at {timestamp} (after Apr 25): {active_agents} agents")
else:
# Before April 25th, 2025 or if ROI data is not available: Use APR data
active_agents = len(apr_data[(apr_data['timestamp'] >= time_24h_ago) &
(apr_data['timestamp'] <= timestamp)]['agent_id'].unique())
logger.debug(f"Using APR data for active agent count at {timestamp} (before Apr 25): {active_agents} agents")
hover_data_apr.append(
f"Time: {formatted_timestamp}<br>Avg APR (3d window): {row['moving_avg']:.2f}<br>Active agents (24h): {active_agents}"
)
fig.add_trace(
go.Scatter(
x=x_values_ma,
y=y_values_ma,
mode='lines', # Only lines for moving average
line=dict(color='red', width=2), # Thinner line
name='Average APR (3d window)',
hovertext=hover_data_apr,
hoverinfo='text',
visible=True # Visible by default
)
)
logger.info(f"Added 3-day moving average APR trace with {len(x_values_ma)} points")
# Add adjusted APR moving average line if it exists
if 'adjusted_moving_avg' in avg_apr_data_with_ma.columns and avg_apr_data_with_ma['adjusted_moving_avg'].notna().any():
# Create a copy of the dataframe with forward-filled adjusted_moving_avg values
# to ensure the line continues even when we have missing data
filled_avg_apr_data = avg_apr_data_with_ma.copy()
filled_avg_apr_data['adjusted_moving_avg'] = filled_avg_apr_data['adjusted_moving_avg'].fillna(method='ffill')
# Use the filled dataframe for the adjusted APR line
x_values_adj = filled_avg_apr_data['timestamp'].tolist()
y_values_adj_ma = filled_avg_apr_data['adjusted_moving_avg'].tolist()
# Create hover template for the adjusted APR moving average line
hover_data_adj = []
for idx, row in filled_avg_apr_data.iterrows():
timestamp = row['timestamp']
# Format timestamp to show only up to seconds (not milliseconds)
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
# Calculate number of active agents in the last 24 hours
# Use ROI data after April 25th, 2025, and APR data before that date
time_24h_ago = timestamp - pd.Timedelta(hours=24)
april_25_2025 = datetime(2025, 4, 25)
if timestamp >= april_25_2025 and global_roi_df is not None and not global_roi_df.empty:
# After April 25th, 2025: Use ROI data
roi_window_data = global_roi_df[(global_roi_df['timestamp'] >= time_24h_ago) &
(global_roi_df['timestamp'] <= timestamp)]
active_agents = len(roi_window_data['agent_id'].unique())
logger.debug(f"Using ROI data for adjusted APR active agent count at {timestamp} (after Apr 25)")
else:
# Before April 25th, 2025 or if ROI data is not available: Use APR data
active_agents = len(apr_data[(apr_data['timestamp'] >= time_24h_ago) &
(apr_data['timestamp'] <= timestamp)]['agent_id'].unique())
logger.debug(f"Using APR data for adjusted APR active agent count at {timestamp} (before Apr 25)")
if pd.notna(row['adjusted_moving_avg']):
hover_data_adj.append(
f"Time: {formatted_timestamp}<br>Avg ETH Adjusted APR (3d window): {row['adjusted_moving_avg']:.2f}<br>Active agents (24h): {active_agents}"
)
else:
hover_data_adj.append(
f"Time: {formatted_timestamp}<br>Avg ETH Adjusted APR (3d window): N/A<br>Active agents (24h): {active_agents}"
)
fig.add_trace(
go.Scatter(
x=x_values_adj,
y=y_values_adj_ma,
mode='lines', # Only lines for moving average
line=dict(color='green', width=4), # Thicker solid line for adjusted APR
name='Average ETH Adjusted APR (3d window)',
hovertext=hover_data_adj,
hoverinfo='text',
visible=True # Visible by default
)
)
logger.info(f"Added 3-day moving average Adjusted APR trace with {len(x_values_adj)} points (with forward-filling for missing values)")
else:
logger.warning("No adjusted APR moving average data available to plot")
# Removed cumulative APR as requested
logger.info("Cumulative APR graph line has been removed as requested")
# Update layout - use simple boolean values everywhere
# Make chart responsive instead of fixed width
fig.update_layout(
title=dict(
text="Modius Agents",
font=dict(
family="Arial, sans-serif",
size=22,
color="black",
weight="bold"
)
),
xaxis_title=None, # Remove x-axis title to use annotation instead
yaxis_title=None, # Remove the y-axis title as we'll use annotations instead
template="plotly_white",
height=600, # Reduced height for better fit on smaller screens
# Removed fixed width to enable responsiveness
autosize=True, # Enable auto-sizing for responsiveness
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
groupclick="toggleitem"
),
margin=dict(r=30, l=120, t=40, b=50), # Increased bottom margin for x-axis title
hovermode="closest"
)
# Add annotations for y-axis regions
fig.add_annotation(
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels
y=-25, # Middle of the negative region
xref="paper",
yref="y",
text="Percent drawdown [%]",
showarrow=False,
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
textangle=-90, # Rotate text to be vertical
align="center"
)
fig.add_annotation(
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels
y=50, # Middle of the positive region
xref="paper",
yref="y",
text="Agent APR [%]",
showarrow=False,
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
textangle=-90, # Rotate text to be vertical
align="center"
)
# Remove x-axis title annotation
# fig.add_annotation(
# x=0.5, # Center of the x-axis
# y=-0.15, # Below the x-axis
# xref="paper",
# yref="paper",
# text="Date",
# showarrow=False,
# font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
# align="center"
# )
# Update layout for legend
fig.update_layout(
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
groupclick="toggleitem",
font=dict(
family="Arial, sans-serif",
size=14, # Adjusted font size
color="black",
weight="bold"
)
)
)
# Update y-axis with fixed range of -50 to +100 for psychological effect
fig.update_yaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
# Use fixed range instead of autoscaling
autorange=False, # Disable autoscaling
range=[-50, 100], # Set fixed range from -50 to +100
tickformat=".2f", # Format tick labels with 2 decimal places
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
title=None # Remove the built-in axis title since we're using annotations
)
# Update x-axis with better formatting and fixed range
fig.update_xaxes(
showgrid=True,
gridwidth=1,
gridcolor='rgba(0,0,0,0.1)',
# Set fixed range with April 17 as start date and ending at the last valid date
autorange=False, # Disable autoscaling
range=[x_start_date, last_valid_date], # Set fixed range from April 17 to last valid date
tickformat="%b %d", # Simplified date format without time
tickangle=-30, # Angle the labels for better readability
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
title=None # Remove built-in title to use annotation instead
)
# SIMPLIFIED APPROACH: Do a direct plot without markers for comparison
# This creates a simple, reliable fallback plot if the advanced one fails
try:
# Write detailed debug information before saving the figure
write_debug_info(df, fig)
# Save the figure (still useful for reference)
graph_file = "modius_apr_combined_graph.html"
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Also save as image for compatibility
img_file = "modius_apr_combined_graph.png"
try:
fig.write_image(img_file)
logger.info(f"Combined graph saved to {graph_file} and {img_file}")
except Exception as e:
logger.error(f"Error saving image: {e}")
logger.info(f"Combined graph saved to {graph_file} only")
# Return the figure object for direct use in Gradio
return fig
except Exception as e:
# If the complex graph approach fails, create a simpler one
logger.error(f"Error creating advanced graph: {e}")
logger.info("Falling back to Simpler graph")
# Create a simpler graph as fallback
simple_fig = go.Figure()
# Add zero line
simple_fig.add_shape(
type="line",
line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0,
x0=min_time, x1=max_time
)
# Define colors for the fallback graph
fallback_colors = px.colors.qualitative.Plotly
# Simply plot the average APR data with moving average
if not avg_apr_data.empty:
# Sort by timestamp
avg_apr_data = avg_apr_data.sort_values('timestamp')
# Calculate both moving averages for the fallback graph
avg_apr_data_with_ma = avg_apr_data.copy()
avg_apr_data_with_ma['moving_avg'] = None # 2-hour window
avg_apr_data_with_ma['infinite_avg'] = None # Infinite window
# Define the time window (6 hours)
time_window = pd.Timedelta(hours=6)
# Calculate the moving averages for each timestamp
for i, row in avg_apr_data_with_ma.iterrows():
current_time = row['timestamp']
window_start = current_time - time_window
# Get all data points within the 2-hour time window
window_data = apr_data[
(apr_data['timestamp'] >= window_start) &
(apr_data['timestamp'] <= current_time)
]
# Get all data points up to the current timestamp (infinite window)
infinite_window_data = apr_data[
apr_data['timestamp'] <= current_time
]
# Calculate the average APR for the 2-hour time window
if not window_data.empty:
avg_apr_data_with_ma.at[i, 'moving_avg'] = window_data['apr'].mean()
else:
# If no data points in the window, use the current value
avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr']
# Calculate the average APR for the infinite window
if not infinite_window_data.empty:
avg_apr_data_with_ma.at[i, 'infinite_avg'] = infinite_window_data['apr'].mean()
else:
avg_apr_data_with_ma.at[i, 'infinite_avg'] = row['apr']
# Add data points for each agent, but only make top agents visible by default
unique_agents = apr_data['agent_name'].unique()
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)}
# Calculate the total number of data points per agent
agent_counts = apr_data['agent_name'].value_counts()
# Determine how many agents to show individually (limit to top 5 most active)
MAX_VISIBLE_AGENTS = 5
top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist()
for agent_name in unique_agents:
agent_data = apr_data[apr_data['agent_name'] == agent_name]
# Determine if this agent should be visible by default
is_visible = agent_name in top_agents
# Add data points as markers
simple_fig.add_trace(
go.Scatter(
x=agent_data['timestamp'],
y=agent_data['apr'],
mode='markers',
name=f'Agent: {agent_name}',
marker=dict(
size=10,
color=color_map[agent_name]
),
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
visible=is_visible # Only top agents visible by default
)
)
# Add 2-hour moving average as a line
simple_fig.add_trace(
go.Scatter(
x=avg_apr_data_with_ma['timestamp'],
y=avg_apr_data_with_ma['moving_avg'],
mode='lines',
name='Average APR (6h window)',
line=dict(width=2, color='red') # Thinner line
)
)
# Add infinite window moving average as another line
simple_fig.add_trace(
go.Scatter(
x=avg_apr_data_with_ma['timestamp'],
y=avg_apr_data_with_ma['infinite_avg'],
mode='lines',
name='Cumulative Average APR (all data)',
line=dict(width=4, color='green') # Thicker solid line
)
)
# Simplified layout with adjusted y-axis range and increased size
simple_fig.update_layout(
title=dict(
text="Modius Agents",
font=dict(
family="Arial, sans-serif",
size=22,
color="black",
weight="bold"
)
),
xaxis_title=None, # Remove x-axis title to use annotation instead
yaxis_title=None, # Remove the y-axis title as we'll use annotations instead
yaxis=dict(
# No fixed range - let Plotly autoscale
autorange=True, # Explicitly enable autoscaling
tickformat=".2f", # Format tick labels with 2 decimal places
tickfont=dict(size=12) # Larger font for tick labels
),
height=600, # Reduced height for better fit
# Removed fixed width to enable responsiveness
autosize=True, # Enable auto-sizing for responsiveness
template="plotly_white", # Use a cleaner template
margin=dict(r=30, l=120, t=40, b=50) # Increased bottom margin for x-axis title
)
# Add annotations for y-axis regions in the fallback graph
simple_fig.add_annotation(
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels
y=-25, # Middle of the negative region
xref="paper",
yref="y",
text="Percent drawdown [%]",
showarrow=False,
font=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
textangle=-90, # Rotate text to be vertical
align="center"
)
simple_fig.add_annotation(
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels
y=50, # Middle of the positive region
xref="paper",
yref="y",
text="Agent APR [%]",
showarrow=False,
font=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
textangle=-90, # Rotate text to be vertical
align="center"
)
# Remove x-axis title annotation
# simple_fig.add_annotation(
# x=0.5, # Center of the x-axis
# y=-0.15, # Below the x-axis
# xref="paper",
# yref="paper",
# text="Date",
# showarrow=False,
# font=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
# align="center"
# )
# Update legend font for fallback graph
simple_fig.update_layout(
legend=dict(
font=dict(
family="Arial, sans-serif",
size=14, # Adjusted font size
color="black",
weight="bold"
)
)
)
# Apply fixed range to the x-axis for the fallback graph
simple_fig.update_xaxes(
autorange=False, # Disable autoscaling
range=[x_start_date, max_time], # Set fixed range from April 17
tickformat="%b %d", # Simplified date format without time
tickangle=-30,
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
title=None # Remove built-in title to use annotation instead
)
# Update y-axis tick font for fallback graph
simple_fig.update_yaxes(
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold") # Adjusted font size
)
# Add a note about hidden agents if there are more than MAX_VISIBLE_AGENTS
if len(unique_agents) > MAX_VISIBLE_AGENTS:
simple_fig.add_annotation(
text=f"Note: Only showing top {MAX_VISIBLE_AGENTS} agents by default. Toggle others in legend.",
xref="paper", yref="paper",
x=0.5, y=1.05,
showarrow=False,
font=dict(size=12, color="gray"),
align="center"
)
# Return the simple figure
return simple_fig
def save_to_csv(df):
"""Save the APR data DataFrame to a CSV file and return the file path"""
if df.empty:
logger.error("No APR data to save to CSV")
return None
# Define the CSV file path
csv_file = "modius_apr_values.csv"
# Save to CSV
df.to_csv(csv_file, index=False)
logger.info(f"APR data saved to {csv_file}")
# Also generate a statistics CSV file
stats_df = generate_statistics_from_data(df)
stats_csv = "modius_apr_statistics.csv"
stats_df.to_csv(stats_csv, index=False)
logger.info(f"Statistics saved to {stats_csv}")
# Log detailed statistics about adjusted APR
if 'adjusted_apr' in df.columns and df['adjusted_apr'].notna().any():
adjusted_stats = stats_df[stats_df['avg_adjusted_apr'].notna()]
logger.info(f"Agents with adjusted APR data: {len(adjusted_stats)} out of {len(stats_df)}")
for _, row in adjusted_stats.iterrows():
if row['agent_id'] != 'ALL': # Skip the overall stats row
logger.info(f"Agent {row['agent_name']} adjusted APR stats: avg={row['avg_adjusted_apr']:.2f}, min={row['min_adjusted_apr']:.2f}, max={row['max_adjusted_apr']:.2f}")
# Log overall adjusted APR stats
overall_row = stats_df[stats_df['agent_id'] == 'ALL']
if not overall_row.empty and pd.notna(overall_row['avg_adjusted_apr'].iloc[0]):
logger.info(f"Overall adjusted APR stats: avg={overall_row['avg_adjusted_apr'].iloc[0]:.2f}, min={overall_row['min_adjusted_apr'].iloc[0]:.2f}, max={overall_row['max_adjusted_apr'].iloc[0]:.2f}")
return csv_file
def generate_statistics_from_data(df):
"""Generate statistics from the APR data"""
if df.empty:
return pd.DataFrame()
# Get unique agents
unique_agents = df['agent_id'].unique()
stats_list = []
# Generate per-agent statistics
for agent_id in unique_agents:
agent_data = df[df['agent_id'] == agent_id]
agent_name = agent_data['agent_name'].iloc[0]
# APR statistics
apr_data = agent_data[agent_data['metric_type'] == 'APR']
real_apr = apr_data[apr_data['is_dummy'] == False]
# Performance statistics
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
real_perf = perf_data[perf_data['is_dummy'] == False]
# Check if adjusted_apr exists and has non-null values
has_adjusted_apr = 'adjusted_apr' in apr_data.columns and apr_data['adjusted_apr'].notna().any()
stats = {
'agent_id': agent_id,
'agent_name': agent_name,
'total_points': len(agent_data),
'apr_points': len(apr_data),
'performance_points': len(perf_data),
'real_apr_points': len(real_apr),
'real_performance_points': len(real_perf),
'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None,
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None,
'max_apr': apr_data['apr'].max() if not apr_data.empty else None,
'min_apr': apr_data['apr'].min() if not apr_data.empty else None,
'avg_adjusted_apr': apr_data['adjusted_apr'].mean() if has_adjusted_apr else None,
'max_adjusted_apr': apr_data['adjusted_apr'].max() if has_adjusted_apr else None,
'min_adjusted_apr': apr_data['adjusted_apr'].min() if has_adjusted_apr else None,
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None
}
stats_list.append(stats)
# Generate overall statistics
apr_only = df[df['metric_type'] == 'APR']
perf_only = df[df['metric_type'] == 'Performance']
# Check if adjusted_apr exists and has non-null values for overall stats
has_adjusted_apr_overall = 'adjusted_apr' in apr_only.columns and apr_only['adjusted_apr'].notna().any()
overall_stats = {
'agent_id': 'ALL',
'agent_name': 'All Agents',
'total_points': len(df),
'apr_points': len(apr_only),
'performance_points': len(perf_only),
'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]),
'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]),
'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None,
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None,
'max_apr': apr_only['apr'].max() if not apr_only.empty else None,
'min_apr': apr_only['apr'].min() if not apr_only.empty else None,
'avg_adjusted_apr': apr_only['adjusted_apr'].mean() if has_adjusted_apr_overall else None,
'max_adjusted_apr': apr_only['adjusted_apr'].max() if has_adjusted_apr_overall else None,
'min_adjusted_apr': apr_only['adjusted_apr'].min() if has_adjusted_apr_overall else None,
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None
}
stats_list.append(overall_stats)
return pd.DataFrame(stats_list)
# Create dummy functions for the commented out imports
def create_transcation_visualizations():
"""Dummy implementation that returns a placeholder graph"""
fig = go.Figure()
fig.add_annotation(
text="Blockchain data loading disabled - placeholder visualization",
x=0.5, y=0.5, xref="paper", yref="paper",
showarrow=False, font=dict(size=20)
)
return fig
def create_active_agents_visualizations():
"""Dummy implementation that returns a placeholder graph"""
fig = go.Figure()
fig.add_annotation(
text="Blockchain data loading disabled - placeholder visualization",
x=0.5, y=0.5, xref="paper", yref="paper",
showarrow=False, font=dict(size=20)
)
return fig
# Comment out the blockchain connection code
"""
# Load environment variables from .env file
# RPC URLs
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
MODE_RPC_URL = os.getenv('MODE_RPC_URL')
# Initialize Web3 instances
web3_instances = {
'optimism': Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL)),
'mode': Web3(Web3.HTTPProvider(MODE_RPC_URL))
}
# Contract addresses for service registries
contract_addresses = {
'optimism': '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44',
'mode': '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE'
}
# Load the ABI from the provided JSON file
with open('./contracts/service_registry_abi.json', 'r') as abi_file:
contract_abi = json.load(abi_file)
# Create the contract instances
service_registries = {
chain_name: web3.eth.contract(address=contract_addresses[chain_name], abi=contract_abi)
for chain_name, web3 in web3_instances.items()
}
# Check if connections are successful
for chain_name, web3_instance in web3_instances.items():
if not web3_instance.is_connected():
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.")
else:
print(f"Successfully connected to the {chain_name.capitalize()} network.")
"""
# Dummy blockchain functions to replace the commented ones
def get_transfers(integrator: str, wallet: str) -> str:
"""Dummy function that returns an empty result"""
return {"transfers": []}
def fetch_and_aggregate_transactions():
"""Dummy function that returns empty data"""
return [], {}
# Function to parse the transaction data and prepare it for visualization
def process_transactions_and_agents(data):
"""Dummy function that returns empty dataframes"""
df_transactions = pd.DataFrame()
df_agents = pd.DataFrame(columns=['date', 'agent_count'])
df_agents_weekly = pd.DataFrame()
return df_transactions, df_agents, df_agents_weekly
# Function to create visualizations based on the metrics
def create_visualizations():
"""
# Commenting out the original visualization code temporarily for debugging
transactions_data = fetch_and_aggregate_transactions()
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data)
# Fetch daily value locked data
df_tvl = pd.read_csv('daily_value_locked.csv')
# Calculate total value locked per chain per day
df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"]
df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index()
df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date'])
# Filter out dates with zero total value locked
df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0]
chain_name_map = {
"mode": "Mode",
"base": "Base",
"ethereum": "Ethereum",
"optimism": "Optimism"
}
df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map)
# Plot total value locked
fig_tvl = px.bar(
df_tvl_daily,
x="date",
y="total_value_locked_usd",
color="chain_name",
opacity=0.7,
title="Total Volume Invested in Pools in Different Chains Daily",
labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"},
barmode='stack',
color_discrete_map={
"Mode": "orange",
"Base": "purple",
"Ethereum": "darkgreen",
"Optimism": "blue"
}
)
fig_tvl.update_layout(
xaxis_title="Date",
yaxis=dict(tickmode='linear', tick0=0, dtick=4),
xaxis=dict(
tickmode='array',
tickvals=df_tvl_daily['date'],
ticktext=df_tvl_daily['date'].dt.strftime('%b %d'),
tickangle=-45,
),
bargap=0.6, # Increase gap between bar groups (0-1)
bargroupgap=0.1, # Decrease gap between bars in a group (0-1)
height=600,
width=1200, # Specify width to prevent bars from being too wide
showlegend=True,
template='plotly_white'
)
fig_tvl.update_xaxes(tickformat="%b %d")
chain_name_map = {
10: "Optimism",
8453: "Base",
1: "Ethereum",
34443: "Mode"
}
df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map)
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map)
df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str)
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str)
df_transactions['date'] = pd.to_datetime(df_transactions['date'])
df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_chain"] == x["receiving_chain"], axis=1)
swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count")
fig_swaps_chain = px.bar(
swaps_per_chain,
x="date",
y="swap_count",
color="sending_chain",
title="Chain Daily Activity: Swaps",
labels={"sending_chain": "Transaction Chain", "swap_count": "Daily Swap Nr"},
barmode="stack",
opacity=0.7,
color_discrete_map={
"Optimism": "blue",
"Ethereum": "darkgreen",
"Base": "purple",
"Mode": "orange"
}
)
fig_swaps_chain.update_layout(
xaxis_title="Date",
yaxis_title="Daily Swap Count",
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
xaxis=dict(
tickmode='array',
tickvals=[d for d in swaps_per_chain['date']],
ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date']],
tickangle=-45,
),
bargap=0.6,
bargroupgap=0.1,
height=600,
width=1200,
margin=dict(l=50, r=50, t=50, b=50),
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99
),
template='plotly_white'
)
fig_swaps_chain.update_xaxes(tickformat="%m-%d")
df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1)
bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count")
fig_bridges_chain = px.bar(
bridges_per_chain,
x="date",
y="bridge_count",
color="sending_chain",
title="Chain Daily Activity: Bridges",
labels={"sending_chain": "Transaction Chain", "bridge_count": "Daily Bridge Nr"},
barmode="stack",
opacity=0.7,
color_discrete_map={
"Optimism": "blue",
"Ethereum": "darkgreen",
"Base": "purple",
"Mode": "orange"
}
)
fig_bridges_chain.update_layout(
xaxis_title="Date",
yaxis_title="Daily Bridge Count",
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
xaxis=dict(
tickmode='array',
tickvals=[d for d in bridges_per_chain['date']],
ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date']],
tickangle=-45,
),
bargap=0.6,
bargroupgap=0.1,
height=600,
width=1200,
margin=dict(l=50, r=50, t=50, b=50),
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99
),
template='plotly_white'
)
fig_bridges_chain.update_xaxes(tickformat="%m-%d")
df_agents['date'] = pd.to_datetime(df_agents['date'])
daily_agents_df = df_agents.groupby('date').agg({'agent_count': 'sum'}).reset_index()
daily_agents_df.rename(columns={'agent_count': 'daily_agent_count'}, inplace=True)
# Sort by date to ensure proper running total calculation
daily_agents_df = daily_agents_df.sort_values('date')
# Create week column
daily_agents_df['week'] = daily_agents_df['date'].dt.to_period('W').apply(lambda r: r.start_time)
# Calculate running total within each week
daily_agents_df['running_weekly_total'] = daily_agents_df.groupby('week')['daily_agent_count'].cumsum()
# Create final merged dataframe
weekly_merged_df = daily_agents_df.copy()
adjustment_date = pd.to_datetime('2024-11-15')
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'daily_agent_count'] -= 1
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'running_weekly_total'] -= 1
fig_agents_registered = go.Figure(data=[
go.Bar(
name='Daily nr of Registered Agents',
x=weekly_merged_df['date'].dt.strftime("%b %d"),
y=weekly_merged_df['daily_agent_count'],
opacity=0.7,
marker_color='blue'
),
go.Bar(
name='Weekly Nr of Registered Agents',
x=weekly_merged_df['date'].dt.strftime("%b %d"),
y=weekly_merged_df['running_weekly_total'],
opacity=0.7,
marker_color='purple'
)
])
fig_agents_registered.update_layout(
xaxis_title='Date',
yaxis_title='Number of Agents',
title="Nr of Agents Registered",
barmode='group',
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
xaxis=dict(
categoryorder='array',
categoryarray=weekly_merged_df['date'].dt.strftime("%b %d"),
tickangle=-45
),
bargap=0.3,
height=600,
width=1200,
showlegend=True,
legend=dict(
yanchor="top",
xanchor="right",
),
template='plotly_white',
)
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl
"""
# Placeholder figures for testing
fig_swaps_chain = go.Figure()
fig_swaps_chain.add_annotation(
text="Blockchain data loading disabled - placeholder visualization",
x=0.5, y=0.5, xref="paper", yref="paper",
showarrow=False, font=dict(size=20)
)
fig_bridges_chain = go.Figure()
fig_bridges_chain.add_annotation(
text="Blockchain data loading disabled - placeholder visualization",
x=0.5, y=0.5, xref="paper", yref="paper",
showarrow=False, font=dict(size=20)
)
fig_agents_registered = go.Figure()
fig_agents_registered.add_annotation(
text="Blockchain data loading disabled - placeholder visualization",
x=0.5, y=0.5, xref="paper", yref="paper",
showarrow=False, font=dict(size=20)
)
fig_tvl = go.Figure()
fig_tvl.add_annotation(
text="Blockchain data loading disabled - placeholder visualization",
x=0.5, y=0.5, xref="paper", yref="paper",
showarrow=False, font=dict(size=20)
)
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_tvl
# Modify dashboard function to make the plot container responsive
def dashboard():
with gr.Blocks() as demo:
gr.Markdown("# Average Modius Agent Performance")
# Create tabs for APR, ROI, and Volume metrics
with gr.Tabs():
# APR Metrics tab
with gr.Tab("APR Metrics"):
with gr.Column():
refresh_apr_btn = gr.Button("Refresh APR Data")
# Create container for plotly figure with responsive sizing
with gr.Column():
combined_apr_graph = gr.Plot(label="APR for All Agents", elem_id="responsive_apr_plot")
# Create compact toggle controls at the bottom of the graph
with gr.Row(visible=True):
gr.Markdown("##### Toggle Graph Lines", elem_id="apr_toggle_title")
with gr.Row():
with gr.Column():
with gr.Row(elem_id="apr_toggle_container"):
with gr.Column(scale=1, min_width=150):
apr_toggle = gr.Checkbox(label="APR Average", value=True, elem_id="apr_toggle")
with gr.Column(scale=1, min_width=150):
adjusted_apr_toggle = gr.Checkbox(label="ETH Adjusted APR Average", value=True, elem_id="adjusted_apr_toggle")
# Add a text area for status messages
apr_status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
# ROI Metrics tab
with gr.Tab("ROI Metrics"):
with gr.Column():
refresh_roi_btn = gr.Button("Refresh ROI Data")
# Create container for plotly figure with responsive sizing
with gr.Column():
combined_roi_graph = gr.Plot(label="ROI for All Agents", elem_id="responsive_roi_plot")
# Create compact toggle controls at the bottom of the graph
with gr.Row(visible=True):
gr.Markdown("##### Toggle Graph Lines", elem_id="roi_toggle_title")
with gr.Row():
with gr.Column():
with gr.Row(elem_id="roi_toggle_container"):
with gr.Column(scale=1, min_width=150):
roi_toggle = gr.Checkbox(label="ROI Average", value=True, elem_id="roi_toggle")
# Add a text area for status messages
roi_status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
# Volume Metrics tab
with gr.Tab("Volume Metrics"):
with gr.Column():
refresh_volume_btn = gr.Button("Refresh Volume Data")
# Create container for plotly figure with responsive sizing
with gr.Column():
combined_volume_graph = gr.Plot(label="Volume for All Agents", elem_id="responsive_volume_plot")
# Create compact toggle controls at the bottom of the graph
with gr.Row(visible=True):
gr.Markdown("##### Toggle Graph Lines", elem_id="volume_toggle_title")
with gr.Row():
with gr.Column():
with gr.Row(elem_id="volume_toggle_container"):
with gr.Column(scale=1, min_width=150):
volume_toggle = gr.Checkbox(label="Volume Average", value=True, elem_id="volume_toggle")
# Add a text area for status messages
volume_status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
# Add custom CSS for making the plots responsive
gr.HTML("""
<style>
/* Make plots responsive */
#responsive_apr_plot, #responsive_roi_plot, #responsive_volume_plot {
width: 100% !important;
max-width: 100% !important;
}
#responsive_apr_plot > div, #responsive_roi_plot > div, #responsive_volume_plot > div {
width: 100% !important;
height: auto !important;
min-height: 500px !important;
}
/* Toggle checkbox styling */
#apr_toggle .gr-checkbox {
accent-color: #e74c3c !important;
}
#adjusted_apr_toggle .gr-checkbox {
accent-color: #2ecc71 !important;
}
#roi_toggle .gr-checkbox {
accent-color: #3498db !important;
}
#volume_toggle .gr-checkbox {
accent-color: #9b59b6 !important;
}
/* Make the toggle section more compact */
#apr_toggle_title, #roi_toggle_title, #volume_toggle_title {
margin-bottom: 0;
margin-top: 10px;
}
#apr_toggle_container, #roi_toggle_container, #volume_toggle_container {
margin-top: 5px;
}
/* Style the checkbox labels */
.gr-form.gr-box {
border: none !important;
background: transparent !important;
}
/* Make checkboxes and labels appear on the same line */
.gr-checkbox-container {
display: flex !important;
align-items: center !important;
}
/* Add colored indicators */
#apr_toggle .gr-checkbox-label::before {
content: "●";
color: #e74c3c;
margin-right: 5px;
}
#adjusted_apr_toggle .gr-checkbox-label::before {
content: "●";
color: #2ecc71;
margin-right: 5px;
}
#roi_toggle .gr-checkbox-label::before {
content: "●";
color: #3498db;
margin-right: 5px;
}
#volume_toggle .gr-checkbox-label::before {
content: "●";
color: #9b59b6;
margin-right: 5px;
}
</style>
""")
# Function to update the APR graph
def update_apr_graph(show_apr_ma=True, show_adjusted_apr_ma=True):
# Generate visualization and get figure object directly
try:
combined_fig, _ = generate_apr_visualizations()
# Update visibility of traces based on toggle values
for i, trace in enumerate(combined_fig.data):
# Check if this is a moving average trace
if trace.name == 'Average APR (3d window)':
trace.visible = show_apr_ma
elif trace.name == 'Average ETH Adjusted APR (3d window)':
trace.visible = show_adjusted_apr_ma
return combined_fig
except Exception as e:
logger.exception("Error generating APR visualization")
# Create error figure
error_fig = go.Figure()
error_fig.add_annotation(
text=f"Error: {str(e)}",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=15, color="red")
)
return error_fig
# Function to update the ROI graph
def update_roi_graph(show_roi_ma=True):
# Generate visualization and get figure object directly
try:
combined_fig, _ = generate_roi_visualizations()
# Update visibility of traces based on toggle values
for i, trace in enumerate(combined_fig.data):
# Check if this is a moving average trace
if trace.name == 'Average ROI (3d window)':
trace.visible = show_roi_ma
return combined_fig
except Exception as e:
logger.exception("Error generating ROI visualization")
# Create error figure
error_fig = go.Figure()
error_fig.add_annotation(
text=f"Error: {str(e)}",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=15, color="red")
)
return error_fig
# Function to update the Volume graph
def update_volume_graph(show_volume_ma=True):
# Generate visualization and get figure object directly
try:
combined_fig, _ = generate_volume_visualizations()
# Update visibility of traces based on toggle values
for i, trace in enumerate(combined_fig.data):
# Check if this is a moving average trace
if trace.name == 'Average Volume (3d window)':
trace.visible = show_volume_ma
return combined_fig
except Exception as e:
logger.exception("Error generating Volume visualization")
# Create error figure
error_fig = go.Figure()
error_fig.add_annotation(
text=f"Error: {str(e)}",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=15, color="red")
)
return error_fig
# Initialize the APR graph on load with a placeholder
apr_placeholder_fig = go.Figure()
apr_placeholder_fig.add_annotation(
text="Click 'Refresh APR Data' to load APR graph",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=15)
)
combined_apr_graph.value = apr_placeholder_fig
# Initialize the ROI graph on load with a placeholder
roi_placeholder_fig = go.Figure()
roi_placeholder_fig.add_annotation(
text="Click 'Refresh ROI Data' to load ROI graph",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=15)
)
combined_roi_graph.value = roi_placeholder_fig
# Initialize the Volume graph on load with a placeholder
volume_placeholder_fig = go.Figure()
volume_placeholder_fig.add_annotation(
text="Click 'Refresh Volume Data' to load Volume graph",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=15)
)
combined_volume_graph.value = volume_placeholder_fig
# Function to update the APR graph based on toggle states
def update_apr_graph_with_toggles(apr_visible, adjusted_apr_visible):
return update_apr_graph(apr_visible, adjusted_apr_visible)
# Function to update the ROI graph based on toggle states
def update_roi_graph_with_toggles(roi_visible):
return update_roi_graph(roi_visible)
# Function to refresh APR data
def refresh_apr_data():
"""Refresh APR data from the database and update the visualization"""
try:
# Fetch new APR data
logger.info("Manually refreshing APR data...")
fetch_apr_data_from_db()
# Verify data was fetched successfully
if global_df is None or len(global_df) == 0:
logger.error("Failed to fetch APR data")
return combined_apr_graph.value, "Error: Failed to fetch APR data. Check the logs for details."
# Log info about fetched data with focus on adjusted_apr
may_10_2025 = datetime(2025, 5, 10)
if 'timestamp' in global_df and 'adjusted_apr' in global_df:
after_may_10 = global_df[global_df['timestamp'] >= may_10_2025]
with_adjusted_after_may_10 = after_may_10[after_may_10['adjusted_apr'].notna()]
logger.info(f"Data points after May 10th, 2025: {len(after_may_10)}")
logger.info(f"Data points with adjusted_apr after May 10th, 2025: {len(with_adjusted_after_may_10)}")
# Generate new visualization
logger.info("Generating new APR visualization...")
new_graph = update_apr_graph(apr_toggle.value, adjusted_apr_toggle.value)
return new_graph, "APR data refreshed successfully"
except Exception as e:
logger.error(f"Error refreshing APR data: {e}")
return combined_apr_graph.value, f"Error: {str(e)}"
# Function to refresh ROI data
def refresh_roi_data():
"""Refresh ROI data from the database and update the visualization"""
try:
# Fetch new ROI data
logger.info("Manually refreshing ROI data...")
fetch_apr_data_from_db() # This also fetches ROI data
# Verify data was fetched successfully
if global_roi_df is None or len(global_roi_df) == 0:
logger.error("Failed to fetch ROI data")
return combined_roi_graph.value, "Error: Failed to fetch ROI data. Check the logs for details."
# Generate new visualization
logger.info("Generating new ROI visualization...")
new_graph = update_roi_graph(roi_toggle.value)
return new_graph, "ROI data refreshed successfully"
except Exception as e:
logger.error(f"Error refreshing ROI data: {e}")
return combined_roi_graph.value, f"Error: {str(e)}"
# Set up the button click event for APR refresh
refresh_apr_btn.click(
fn=refresh_apr_data,
inputs=[],
outputs=[combined_apr_graph, apr_status_text]
)
# Set up the button click event for ROI refresh
refresh_roi_btn.click(
fn=refresh_roi_data,
inputs=[],
outputs=[combined_roi_graph, roi_status_text]
)
# Set up the toggle switch events for APR
apr_toggle.change(
fn=update_apr_graph_with_toggles,
inputs=[apr_toggle, adjusted_apr_toggle],
outputs=[combined_apr_graph]
)
adjusted_apr_toggle.change(
fn=update_apr_graph_with_toggles,
inputs=[apr_toggle, adjusted_apr_toggle],
outputs=[combined_apr_graph]
)
# Set up the toggle switch events for ROI
roi_toggle.change(
fn=update_roi_graph_with_toggles,
inputs=[roi_toggle],
outputs=[combined_roi_graph]
)
# Function to refresh volume data
def refresh_volume_data():
"""Refresh volume data from the database and update the visualization"""
try:
# Fetch new volume data
logger.info("Manually refreshing volume data...")
fetch_apr_data_from_db() # This also fetches volume data
# Verify data was fetched successfully
if global_df is None or len(global_df) == 0:
logger.error("Failed to fetch volume data")
return combined_volume_graph.value, "Error: Failed to fetch volume data. Check the logs for details."
# Generate new visualization
logger.info("Generating new volume visualization...")
new_graph = update_volume_graph(volume_toggle.value)
return new_graph, "Volume data refreshed successfully"
except Exception as e:
logger.error(f"Error refreshing volume data: {e}")
return combined_volume_graph.value, f"Error: {str(e)}"
# Set up the button click event for volume refresh
refresh_volume_btn.click(
fn=refresh_volume_data,
inputs=[],
outputs=[combined_volume_graph, volume_status_text]
)
# Set up the toggle switch events for volume
volume_toggle.change(
fn=update_volume_graph,
inputs=[volume_toggle],
outputs=[combined_volume_graph]
)
return demo
# Launch the dashboard
if __name__ == "__main__":
dashboard().launch()
def generate_adjusted_apr_report():
"""
Generate a detailed report about adjusted_apr data availability and save it to a file.
Returns the path to the generated report file.
"""
global global_df
if global_df is None or global_df.empty or 'adjusted_apr' not in global_df.columns:
logger.warning("No adjusted_apr data available for report generation")
return None
# Create a report file
report_path = "adjusted_apr_report.txt"
with open(report_path, "w") as f:
f.write("======== ADJUSTED APR DATA AVAILABILITY REPORT ========\n\n")
# Summary statistics
total_records = len(global_df)
records_with_adjusted = global_df['adjusted_apr'].notna().sum()
pct_with_adjusted = (records_with_adjusted / total_records) * 100 if total_records > 0 else 0
f.write(f"Total APR records: {total_records}\n")
f.write(f"Records with adjusted_apr: {records_with_adjusted} ({pct_with_adjusted:.2f}%)\n\n")
# First and last data points
if records_with_adjusted > 0:
has_adjusted = global_df[global_df['adjusted_apr'].notna()]
first_date = has_adjusted['timestamp'].min()
last_date = has_adjusted['timestamp'].max()
f.write(f"First adjusted_apr record: {first_date}\n")
f.write(f"Last adjusted_apr record: {last_date}\n")
f.write(f"Date range: {(last_date - first_date).days} days\n\n")
# Agent statistics
f.write("===== AGENT STATISTICS =====\n\n")
# Group by agent
agent_stats = []
for agent_id in global_df['agent_id'].unique():
agent_data = global_df[global_df['agent_id'] == agent_id]
agent_name = agent_data['agent_name'].iloc[0] if not agent_data.empty else f"Agent {agent_id}"
total_agent_records = len(agent_data)
agent_with_adjusted = agent_data['adjusted_apr'].notna().sum()
coverage_pct = (agent_with_adjusted / total_agent_records) * 100 if total_agent_records > 0 else 0
agent_stats.append({
'agent_id': agent_id,
'agent_name': agent_name,
'total_records': total_agent_records,
'with_adjusted': agent_with_adjusted,
'coverage_pct': coverage_pct
})
# Sort by coverage percentage (descending)
agent_stats.sort(key=lambda x: x['coverage_pct'], reverse=True)
# Write agent statistics
for agent in agent_stats:
f.write(f"Agent: {agent['agent_name']} (ID: {agent['agent_id']})\n")
f.write(f" Records: {agent['total_records']}\n")
f.write(f" With adjusted_apr: {agent['with_adjusted']} ({agent['coverage_pct']:.2f}%)\n")
# If agent has adjusted data, show date range
agent_data = global_df[global_df['agent_id'] == agent['agent_id']]
agent_adjusted = agent_data[agent_data['adjusted_apr'].notna()]
if not agent_adjusted.empty:
first = agent_adjusted['timestamp'].min()
last = agent_adjusted['timestamp'].max()
f.write(f" First adjusted_apr: {first}\n")
f.write(f" Last adjusted_apr: {last}\n")
f.write("\n")
# Check for May 10th cutoff issue
f.write("===== MAY 10TH CUTOFF ANALYSIS =====\n\n")
may_10_2025 = datetime(2025, 5, 10)
before_cutoff = global_df[global_df['timestamp'] < may_10_2025]
after_cutoff = global_df[global_df['timestamp'] >= may_10_2025]
# Calculate coverage before and after
before_total = len(before_cutoff)
before_with_adjusted = before_cutoff['adjusted_apr'].notna().sum()
before_pct = (before_with_adjusted / before_total) * 100 if before_total > 0 else 0
after_total = len(after_cutoff)
after_with_adjusted = after_cutoff['adjusted_apr'].notna().sum()
after_pct = (after_with_adjusted / after_total) * 100 if after_total > 0 else 0
f.write(f"Before May 10th, 2025:\n")
f.write(f" Records: {before_total}\n")
f.write(f" With adjusted_apr: {before_with_adjusted} ({before_pct:.2f}%)\n\n")
f.write(f"After May 10th, 2025:\n")
f.write(f" Records: {after_total}\n")
f.write(f" With adjusted_apr: {after_with_adjusted} ({after_pct:.2f}%)\n\n")
# Check for agents that had data before but not after
if before_total > 0 and after_total > 0:
agents_before = set(before_cutoff[before_cutoff['adjusted_apr'].notna()]['agent_id'].unique())
agents_after = set(after_cutoff[after_cutoff['adjusted_apr'].notna()]['agent_id'].unique())
missing_after = agents_before - agents_after
new_after = agents_after - agents_before
if missing_after:
f.write(f"Agents with adjusted_apr before May 10th but not after: {list(missing_after)}\n")
# For each missing agent, show the last date with adjusted_apr
for agent_id in missing_after:
agent_data = before_cutoff[(before_cutoff['agent_id'] == agent_id) &
(before_cutoff['adjusted_apr'].notna())]
if not agent_data.empty:
last_date = agent_data['timestamp'].max()
agent_name = agent_data['agent_name'].iloc[0]
f.write(f" {agent_name} (ID: {agent_id}): Last adjusted_apr on {last_date}\n")
if new_after:
f.write(f"\nAgents with adjusted_apr after May 10th but not before: {list(new_after)}\n")
logger.info(f"Adjusted APR report generated: {report_path}")
return report_path