Spaces:
Running
Running
gauravlochab
commited on
Commit
·
0d99588
1
Parent(s):
fdcd7fd
feat: update active agent count logic
Browse files
app.py
CHANGED
|
@@ -1593,9 +1593,21 @@ def create_combined_time_series_graph(df):
|
|
| 1593 |
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
| 1594 |
|
| 1595 |
# Calculate number of active agents in the last 24 hours
|
|
|
|
| 1596 |
time_24h_ago = timestamp - pd.Timedelta(hours=24)
|
| 1597 |
-
|
| 1598 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1599 |
|
| 1600 |
hover_data_apr.append(
|
| 1601 |
f"Time: {formatted_timestamp}<br>Avg APR (3d window): {row['moving_avg']:.2f}<br>Active agents (24h): {active_agents}"
|
|
@@ -1634,9 +1646,21 @@ def create_combined_time_series_graph(df):
|
|
| 1634 |
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
| 1635 |
|
| 1636 |
# Calculate number of active agents in the last 24 hours
|
|
|
|
| 1637 |
time_24h_ago = timestamp - pd.Timedelta(hours=24)
|
| 1638 |
-
|
| 1639 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1640 |
|
| 1641 |
if pd.notna(row['adjusted_moving_avg']):
|
| 1642 |
hover_data_adj.append(
|
|
|
|
| 1593 |
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
| 1594 |
|
| 1595 |
# Calculate number of active agents in the last 24 hours
|
| 1596 |
+
# Use ROI data after April 25th, 2025, and APR data before that date
|
| 1597 |
time_24h_ago = timestamp - pd.Timedelta(hours=24)
|
| 1598 |
+
april_25_2025 = datetime(2025, 4, 25)
|
| 1599 |
+
|
| 1600 |
+
if timestamp >= april_25_2025 and global_roi_df is not None and not global_roi_df.empty:
|
| 1601 |
+
# After April 25th, 2025: Use ROI data
|
| 1602 |
+
roi_window_data = global_roi_df[(global_roi_df['timestamp'] >= time_24h_ago) &
|
| 1603 |
+
(global_roi_df['timestamp'] <= timestamp)]
|
| 1604 |
+
active_agents = len(roi_window_data['agent_id'].unique())
|
| 1605 |
+
logger.debug(f"Using ROI data for active agent count at {timestamp} (after Apr 25): {active_agents} agents")
|
| 1606 |
+
else:
|
| 1607 |
+
# Before April 25th, 2025 or if ROI data is not available: Use APR data
|
| 1608 |
+
active_agents = len(apr_data[(apr_data['timestamp'] >= time_24h_ago) &
|
| 1609 |
+
(apr_data['timestamp'] <= timestamp)]['agent_id'].unique())
|
| 1610 |
+
logger.debug(f"Using APR data for active agent count at {timestamp} (before Apr 25): {active_agents} agents")
|
| 1611 |
|
| 1612 |
hover_data_apr.append(
|
| 1613 |
f"Time: {formatted_timestamp}<br>Avg APR (3d window): {row['moving_avg']:.2f}<br>Active agents (24h): {active_agents}"
|
|
|
|
| 1646 |
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
| 1647 |
|
| 1648 |
# Calculate number of active agents in the last 24 hours
|
| 1649 |
+
# Use ROI data after April 25th, 2025, and APR data before that date
|
| 1650 |
time_24h_ago = timestamp - pd.Timedelta(hours=24)
|
| 1651 |
+
april_25_2025 = datetime(2025, 4, 25)
|
| 1652 |
+
|
| 1653 |
+
if timestamp >= april_25_2025 and global_roi_df is not None and not global_roi_df.empty:
|
| 1654 |
+
# After April 25th, 2025: Use ROI data
|
| 1655 |
+
roi_window_data = global_roi_df[(global_roi_df['timestamp'] >= time_24h_ago) &
|
| 1656 |
+
(global_roi_df['timestamp'] <= timestamp)]
|
| 1657 |
+
active_agents = len(roi_window_data['agent_id'].unique())
|
| 1658 |
+
logger.debug(f"Using ROI data for adjusted APR active agent count at {timestamp} (after Apr 25)")
|
| 1659 |
+
else:
|
| 1660 |
+
# Before April 25th, 2025 or if ROI data is not available: Use APR data
|
| 1661 |
+
active_agents = len(apr_data[(apr_data['timestamp'] >= time_24h_ago) &
|
| 1662 |
+
(apr_data['timestamp'] <= timestamp)]['agent_id'].unique())
|
| 1663 |
+
logger.debug(f"Using APR data for adjusted APR active agent count at {timestamp} (before Apr 25)")
|
| 1664 |
|
| 1665 |
if pd.notna(row['adjusted_moving_avg']):
|
| 1666 |
hover_data_adj.append(
|