Spaces:
Running
Running
gauravlochab
commited on
Commit
·
45a247a
1
Parent(s):
5aa3a66
feat: adding baseline for performance graph
Browse files- app.py +88 -3
- apr_vs_agent_hash.py +488 -0
app.py
CHANGED
@@ -17,6 +17,8 @@ import logging
|
|
17 |
from typing import List, Dict, Any, Optional
|
18 |
# Comment out the import for now and replace with dummy functions
|
19 |
# from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
|
|
|
|
|
20 |
# APR visualization functions integrated directly
|
21 |
|
22 |
# Set up logging with appropriate verbosity
|
@@ -191,7 +193,14 @@ def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
|
191 |
if portfolio and isinstance(portfolio, dict):
|
192 |
volume = portfolio.get("volume")
|
193 |
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
# Convert timestamp to datetime if it exists
|
197 |
timestamp_dt = None
|
@@ -204,7 +213,8 @@ def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
|
204 |
"roi": roi,
|
205 |
"volume": volume,
|
206 |
"timestamp": timestamp_dt,
|
207 |
-
"agent_id": agent_id,
|
|
|
208 |
"is_dummy": False
|
209 |
}
|
210 |
logger.debug(f"Agent {agent_id}: Extracted result: {result}")
|
@@ -2949,7 +2959,7 @@ def dashboard():
|
|
2949 |
with gr.Blocks() as demo:
|
2950 |
gr.Markdown("# Average Modius Agent Performance")
|
2951 |
|
2952 |
-
# Create tabs for APR, ROI, and
|
2953 |
with gr.Tabs():
|
2954 |
# APR Metrics tab
|
2955 |
with gr.Tab("APR Metrics"):
|
@@ -3019,6 +3029,18 @@ def dashboard():
|
|
3019 |
|
3020 |
# Add a text area for status messages
|
3021 |
volume_status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3022 |
|
3023 |
# Add custom CSS for making the plots responsive
|
3024 |
gr.HTML("""
|
@@ -3207,6 +3229,16 @@ def dashboard():
|
|
3207 |
)
|
3208 |
combined_volume_graph.value = volume_placeholder_fig
|
3209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3210 |
# Function to update the APR graph based on toggle states
|
3211 |
def update_apr_graph_with_toggles(apr_visible, adjusted_apr_visible):
|
3212 |
return update_apr_graph(apr_visible, adjusted_apr_visible)
|
@@ -3334,6 +3366,59 @@ def dashboard():
|
|
3334 |
inputs=[volume_toggle],
|
3335 |
outputs=[combined_volume_graph]
|
3336 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3337 |
|
3338 |
return demo
|
3339 |
|
|
|
17 |
from typing import List, Dict, Any, Optional
|
18 |
# Comment out the import for now and replace with dummy functions
|
19 |
# from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
|
20 |
+
# Import APR vs agent hash visualization functions
|
21 |
+
from apr_vs_agent_hash import generate_apr_vs_agent_hash_visualizations
|
22 |
# APR visualization functions integrated directly
|
23 |
|
24 |
# Set up logging with appropriate verbosity
|
|
|
193 |
if portfolio and isinstance(portfolio, dict):
|
194 |
volume = portfolio.get("volume")
|
195 |
|
196 |
+
# Extract agent_hash from json_data or portfolio_snapshot
|
197 |
+
agent_hash = json_data.get("agent_hash")
|
198 |
+
if agent_hash is None and "portfolio_snapshot" in json_data and json_data["portfolio_snapshot"] is not None:
|
199 |
+
portfolio = json_data["portfolio_snapshot"].get("portfolio")
|
200 |
+
if portfolio and isinstance(portfolio, dict):
|
201 |
+
agent_hash = portfolio.get("agent_hash")
|
202 |
+
|
203 |
+
logger.debug(f"Agent {agent_id}: Raw APR value: {apr}, adjusted APR value: {adjusted_apr}, ROI value: {roi}, volume: {volume}, timestamp: {timestamp}, agent_hash: {agent_hash}")
|
204 |
|
205 |
# Convert timestamp to datetime if it exists
|
206 |
timestamp_dt = None
|
|
|
213 |
"roi": roi,
|
214 |
"volume": volume,
|
215 |
"timestamp": timestamp_dt,
|
216 |
+
"agent_id": agent_id,
|
217 |
+
"agent_hash": agent_hash,
|
218 |
"is_dummy": False
|
219 |
}
|
220 |
logger.debug(f"Agent {agent_id}: Extracted result: {result}")
|
|
|
2959 |
with gr.Blocks() as demo:
|
2960 |
gr.Markdown("# Average Modius Agent Performance")
|
2961 |
|
2962 |
+
# Create tabs for APR, ROI, Volume, and APR vs Agent Hash metrics
|
2963 |
with gr.Tabs():
|
2964 |
# APR Metrics tab
|
2965 |
with gr.Tab("APR Metrics"):
|
|
|
3029 |
|
3030 |
# Add a text area for status messages
|
3031 |
volume_status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
|
3032 |
+
|
3033 |
+
# APR vs Agent Hash tab
|
3034 |
+
with gr.Tab("APR vs Agent Hash"):
|
3035 |
+
with gr.Column():
|
3036 |
+
refresh_apr_hash_btn = gr.Button("Refresh APR vs Agent Hash Data")
|
3037 |
+
|
3038 |
+
# Create container for plotly figure with responsive sizing
|
3039 |
+
with gr.Column():
|
3040 |
+
apr_vs_agent_hash_graph = gr.Plot(label="APR vs Agent Hash", elem_id="responsive_apr_hash_plot")
|
3041 |
+
|
3042 |
+
# Add a text area for status messages
|
3043 |
+
apr_hash_status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
|
3044 |
|
3045 |
# Add custom CSS for making the plots responsive
|
3046 |
gr.HTML("""
|
|
|
3229 |
)
|
3230 |
combined_volume_graph.value = volume_placeholder_fig
|
3231 |
|
3232 |
+
# Initialize the APR vs Agent Hash graph on load with a placeholder
|
3233 |
+
apr_hash_placeholder_fig = go.Figure()
|
3234 |
+
apr_hash_placeholder_fig.add_annotation(
|
3235 |
+
text="Click 'Refresh APR vs Agent Hash Data' to load APR vs Agent Hash graph",
|
3236 |
+
x=0.5, y=0.5,
|
3237 |
+
showarrow=False,
|
3238 |
+
font=dict(size=15)
|
3239 |
+
)
|
3240 |
+
apr_vs_agent_hash_graph.value = apr_hash_placeholder_fig
|
3241 |
+
|
3242 |
# Function to update the APR graph based on toggle states
|
3243 |
def update_apr_graph_with_toggles(apr_visible, adjusted_apr_visible):
|
3244 |
return update_apr_graph(apr_visible, adjusted_apr_visible)
|
|
|
3366 |
inputs=[volume_toggle],
|
3367 |
outputs=[combined_volume_graph]
|
3368 |
)
|
3369 |
+
|
3370 |
+
# Function to update the APR vs Agent Hash graph
|
3371 |
+
def update_apr_vs_agent_hash_graph():
|
3372 |
+
"""Update the APR vs Agent Hash graph"""
|
3373 |
+
try:
|
3374 |
+
# Generate visualization and get figure object directly
|
3375 |
+
fig, _ = generate_apr_vs_agent_hash_visualizations(global_df)
|
3376 |
+
return fig
|
3377 |
+
except Exception as e:
|
3378 |
+
logger.exception("Error generating APR vs Agent Hash visualization")
|
3379 |
+
# Create error figure
|
3380 |
+
error_fig = go.Figure()
|
3381 |
+
error_fig.add_annotation(
|
3382 |
+
text=f"Error: {str(e)}",
|
3383 |
+
x=0.5, y=0.5,
|
3384 |
+
showarrow=False,
|
3385 |
+
font=dict(size=15, color="red")
|
3386 |
+
)
|
3387 |
+
return error_fig
|
3388 |
+
|
3389 |
+
# Function to refresh APR vs Agent Hash data
|
3390 |
+
def refresh_apr_vs_agent_hash_data():
|
3391 |
+
"""Refresh APR vs Agent Hash data from the database and update the visualization"""
|
3392 |
+
try:
|
3393 |
+
# Fetch new APR data if not already fetched
|
3394 |
+
logger.info("Manually refreshing APR vs Agent Hash data...")
|
3395 |
+
if global_df is None or global_df.empty:
|
3396 |
+
fetch_apr_data_from_db()
|
3397 |
+
|
3398 |
+
# Verify data was fetched successfully
|
3399 |
+
if global_df is None or len(global_df) == 0:
|
3400 |
+
logger.error("Failed to fetch APR data for APR vs Agent Hash visualization")
|
3401 |
+
return apr_vs_agent_hash_graph.value, "Error: Failed to fetch APR data. Check the logs for details."
|
3402 |
+
|
3403 |
+
# Check if agent_hash column exists
|
3404 |
+
if 'agent_hash' not in global_df.columns:
|
3405 |
+
logger.error("agent_hash column not found in DataFrame")
|
3406 |
+
return apr_vs_agent_hash_graph.value, "Error: agent_hash column not found in data. Check the logs for details."
|
3407 |
+
|
3408 |
+
# Generate new visualization
|
3409 |
+
logger.info("Generating new APR vs Agent Hash visualization...")
|
3410 |
+
new_graph = update_apr_vs_agent_hash_graph()
|
3411 |
+
return new_graph, "APR vs Agent Hash data refreshed successfully"
|
3412 |
+
except Exception as e:
|
3413 |
+
logger.error(f"Error refreshing APR vs Agent Hash data: {e}")
|
3414 |
+
return apr_vs_agent_hash_graph.value, f"Error: {str(e)}"
|
3415 |
+
|
3416 |
+
# Set up the button click event for APR vs Agent Hash refresh
|
3417 |
+
refresh_apr_hash_btn.click(
|
3418 |
+
fn=refresh_apr_vs_agent_hash_data,
|
3419 |
+
inputs=[],
|
3420 |
+
outputs=[apr_vs_agent_hash_graph, apr_hash_status_text]
|
3421 |
+
)
|
3422 |
|
3423 |
return demo
|
3424 |
|
apr_vs_agent_hash.py
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
import plotly.express as px
|
4 |
+
from datetime import datetime
|
5 |
+
import logging
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Set up logging
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
def create_apr_vs_agent_hash_graph(df):
|
13 |
+
"""
|
14 |
+
Create a box plot showing APR values distribution for each agent hash version.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
df: DataFrame containing the APR data with agent_hash column
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
A Plotly figure object
|
21 |
+
"""
|
22 |
+
if len(df) == 0 or 'agent_hash' not in df.columns:
|
23 |
+
logger.error("No data or agent_hash column not found to plot APR vs agent hash graph")
|
24 |
+
fig = go.Figure()
|
25 |
+
fig.add_annotation(
|
26 |
+
text="No agent hash data available",
|
27 |
+
x=0.5, y=0.5,
|
28 |
+
showarrow=False, font=dict(size=20)
|
29 |
+
)
|
30 |
+
return fig
|
31 |
+
|
32 |
+
# Filter for APR data only and ensure agent_hash is not null
|
33 |
+
apr_data = df[(df['metric_type'] == 'APR') & (df['agent_hash'].notna())].copy()
|
34 |
+
|
35 |
+
if len(apr_data) == 0:
|
36 |
+
logger.error("No valid APR data with agent_hash found")
|
37 |
+
fig = go.Figure()
|
38 |
+
fig.add_annotation(
|
39 |
+
text="No valid APR data with agent_hash found",
|
40 |
+
x=0.5, y=0.5,
|
41 |
+
showarrow=False, font=dict(size=20)
|
42 |
+
)
|
43 |
+
return fig
|
44 |
+
|
45 |
+
# Filter out outliers (APR values above 200 or below -200)
|
46 |
+
outlier_data = apr_data[(apr_data['apr'] > 200) | (apr_data['apr'] < -200)].copy()
|
47 |
+
apr_data_filtered = apr_data[(apr_data['apr'] <= 200) & (apr_data['apr'] >= -200)].copy()
|
48 |
+
|
49 |
+
# Log the outliers for better debugging
|
50 |
+
if len(outlier_data) > 0:
|
51 |
+
excluded_count = len(outlier_data)
|
52 |
+
logger.info(f"Excluded {excluded_count} data points with outlier APR values (>200 or <-200)")
|
53 |
+
|
54 |
+
# Group outliers by agent for detailed logging
|
55 |
+
outlier_agents = outlier_data.groupby('agent_name')
|
56 |
+
for agent_name, agent_outliers in outlier_agents:
|
57 |
+
logger.info(f"Agent '{agent_name}' has {len(agent_outliers)} outlier values:")
|
58 |
+
for idx, row in agent_outliers.iterrows():
|
59 |
+
logger.info(f" - APR: {row['apr']}, timestamp: {row['timestamp']}, agent_hash: {row['agent_hash']}")
|
60 |
+
|
61 |
+
# Use the filtered data for all subsequent operations
|
62 |
+
apr_data = apr_data_filtered
|
63 |
+
|
64 |
+
# Create Plotly figure
|
65 |
+
fig = go.Figure()
|
66 |
+
|
67 |
+
# Add a zero line that spans the entire width
|
68 |
+
fig.add_shape(
|
69 |
+
type="line",
|
70 |
+
line=dict(dash="solid", width=1.5, color="black"),
|
71 |
+
y0=0, y1=0,
|
72 |
+
x0=-0.5, x1=10, # Will be adjusted later based on number of boxes
|
73 |
+
layer="below"
|
74 |
+
)
|
75 |
+
|
76 |
+
# Add background shapes for positive and negative regions
|
77 |
+
# These will be adjusted later based on the actual x-axis range
|
78 |
+
fig.add_shape(
|
79 |
+
type="rect",
|
80 |
+
fillcolor="rgba(230, 243, 255, 0.3)",
|
81 |
+
line=dict(width=0),
|
82 |
+
y0=0, y1=100, # Use a fixed positive value
|
83 |
+
x0=-0.5, x1=10, # Will be adjusted later
|
84 |
+
layer="below"
|
85 |
+
)
|
86 |
+
|
87 |
+
fig.add_shape(
|
88 |
+
type="rect",
|
89 |
+
fillcolor="rgba(255, 230, 230, 0.3)",
|
90 |
+
line=dict(width=0),
|
91 |
+
y0=-100, y1=0, # Use a fixed negative value
|
92 |
+
x0=-0.5, x1=10, # Will be adjusted later
|
93 |
+
layer="below"
|
94 |
+
)
|
95 |
+
|
96 |
+
# Group by agent_hash
|
97 |
+
unique_hashes = apr_data['agent_hash'].unique()
|
98 |
+
|
99 |
+
# Map for version labels based on hash endings
|
100 |
+
version_map = {}
|
101 |
+
for hash_val in unique_hashes:
|
102 |
+
if hash_val.endswith("tby"):
|
103 |
+
version_map[hash_val] = "v0.4.1"
|
104 |
+
elif hash_val.endswith("vq"):
|
105 |
+
version_map[hash_val] = "v0.4.2"
|
106 |
+
else:
|
107 |
+
# For any other hashes, use the last 6 characters
|
108 |
+
version_map[hash_val] = f"Hash: {hash_val[-6:]}"
|
109 |
+
|
110 |
+
# Sort hashes by version (v0.4.1 first, then v0.4.2)
|
111 |
+
sorted_hashes = sorted(unique_hashes, key=lambda h: "1" if h.endswith("tby") else "2" if h.endswith("vq") else h)
|
112 |
+
|
113 |
+
# Colors for different versions
|
114 |
+
version_colors = {
|
115 |
+
"v0.4.1": "rgba(31, 119, 180, 0.7)", # Blue
|
116 |
+
"v0.4.2": "rgba(44, 160, 44, 0.7)", # Green
|
117 |
+
}
|
118 |
+
|
119 |
+
# Default color for other hashes
|
120 |
+
default_color = "rgba(214, 39, 40, 0.7)" # Red
|
121 |
+
|
122 |
+
# Prepare data for box plots and statistics
|
123 |
+
box_data = []
|
124 |
+
version_stats = {}
|
125 |
+
|
126 |
+
# X-axis positions and labels
|
127 |
+
x_positions = []
|
128 |
+
x_labels = []
|
129 |
+
|
130 |
+
# Process each hash to create box plot data
|
131 |
+
for i, agent_hash in enumerate(sorted_hashes):
|
132 |
+
hash_data = apr_data[apr_data['agent_hash'] == agent_hash]
|
133 |
+
|
134 |
+
# Get agent name for this hash (should be the same for all records with this hash)
|
135 |
+
agent_name = hash_data['agent_name'].iloc[0] if not hash_data.empty else "Unknown"
|
136 |
+
|
137 |
+
# Get version label
|
138 |
+
version = version_map[agent_hash]
|
139 |
+
|
140 |
+
# Choose color based on version
|
141 |
+
if version in version_colors:
|
142 |
+
color = version_colors[version]
|
143 |
+
else:
|
144 |
+
color = default_color
|
145 |
+
|
146 |
+
# Calculate statistics for this hash
|
147 |
+
apr_values = hash_data['apr'].tolist()
|
148 |
+
median_apr = hash_data['apr'].median()
|
149 |
+
mean_apr = hash_data['apr'].mean()
|
150 |
+
min_apr = hash_data['apr'].min()
|
151 |
+
max_apr = hash_data['apr'].max()
|
152 |
+
count = len(apr_values)
|
153 |
+
|
154 |
+
# Store statistics for later use
|
155 |
+
if version not in version_stats:
|
156 |
+
version_stats[version] = {
|
157 |
+
'apr_values': [],
|
158 |
+
'count': 0,
|
159 |
+
'hashes': []
|
160 |
+
}
|
161 |
+
|
162 |
+
version_stats[version]['apr_values'].extend(apr_values)
|
163 |
+
version_stats[version]['count'] += count
|
164 |
+
version_stats[version]['hashes'].append(agent_hash)
|
165 |
+
|
166 |
+
# Create label with version only (no hash)
|
167 |
+
label = f"{version}"
|
168 |
+
|
169 |
+
# Add to x-axis positions and labels
|
170 |
+
x_positions.append(i)
|
171 |
+
x_labels.append(label)
|
172 |
+
|
173 |
+
# Create hover text with detailed statistics
|
174 |
+
hover_text = (
|
175 |
+
f"Version: {version}<br>"
|
176 |
+
f"Agent: {agent_name}<br>"
|
177 |
+
f"Hash: {agent_hash}<br>"
|
178 |
+
f"Median APR: {median_apr:.2f}%<br>"
|
179 |
+
f"Mean APR: {mean_apr:.2f}%<br>"
|
180 |
+
f"Min APR: {min_apr:.2f}%<br>"
|
181 |
+
f"Max APR: {max_apr:.2f}%<br>"
|
182 |
+
f"Data points: {count}"
|
183 |
+
)
|
184 |
+
|
185 |
+
# Add box plot for this hash
|
186 |
+
fig.add_trace(
|
187 |
+
go.Box(
|
188 |
+
y=apr_values,
|
189 |
+
x=[i] * len(apr_values), # Position on x-axis
|
190 |
+
name=label,
|
191 |
+
boxpoints='outliers', # Show only outlier points instead of all points
|
192 |
+
jitter=0.1, # Reduced jitter for less horizontal spread
|
193 |
+
pointpos=0, # Position of points relative to box
|
194 |
+
marker=dict(
|
195 |
+
color=color,
|
196 |
+
size=6, # Smaller point size
|
197 |
+
opacity=0.7, # Add transparency
|
198 |
+
line=dict(width=1, color='black')
|
199 |
+
),
|
200 |
+
line=dict(
|
201 |
+
color='black',
|
202 |
+
width=2 # Thicker line for better visibility
|
203 |
+
),
|
204 |
+
fillcolor=color,
|
205 |
+
hoverinfo='text',
|
206 |
+
hovertext=hover_text,
|
207 |
+
showlegend=False,
|
208 |
+
boxmean=True, # Show mean as a dashed line
|
209 |
+
whiskerwidth=0.8, # Slightly thinner whiskers
|
210 |
+
width=0.6 # Wider boxes
|
211 |
+
)
|
212 |
+
)
|
213 |
+
|
214 |
+
logger.info(f"Added box plot for agent hash {agent_hash} ({version}) with {count} points")
|
215 |
+
|
216 |
+
# Add text annotation with median value above each box
|
217 |
+
fig.add_annotation(
|
218 |
+
x=i,
|
219 |
+
y=median_apr + 5, # Position above the box
|
220 |
+
text=f"{median_apr:.1f}%",
|
221 |
+
showarrow=False,
|
222 |
+
font=dict(
|
223 |
+
family="Arial, sans-serif",
|
224 |
+
size=12,
|
225 |
+
color="black",
|
226 |
+
weight="bold"
|
227 |
+
)
|
228 |
+
)
|
229 |
+
|
230 |
+
# Calculate improvement metrics between versions
|
231 |
+
if "v0.4.1" in version_stats and "v0.4.2" in version_stats:
|
232 |
+
v041_values = version_stats["v0.4.1"]["apr_values"]
|
233 |
+
v042_values = version_stats["v0.4.2"]["apr_values"]
|
234 |
+
|
235 |
+
v041_median = pd.Series(v041_values).median()
|
236 |
+
v042_median = pd.Series(v042_values).median()
|
237 |
+
|
238 |
+
improvement = v042_median - v041_median
|
239 |
+
improvement_pct = (improvement / abs(v041_median)) * 100 if v041_median != 0 else float('inf')
|
240 |
+
|
241 |
+
# Determine if the change is positive or negative
|
242 |
+
is_improvement = improvement > 0
|
243 |
+
change_color = "green" if is_improvement else "red"
|
244 |
+
change_text = "improvement" if is_improvement else "decrease"
|
245 |
+
|
246 |
+
# Add annotation showing improvement with better styling
|
247 |
+
fig.add_annotation(
|
248 |
+
x=(len(sorted_hashes) - 1) / 2, # Center of the x-axis
|
249 |
+
y=90, # Top of the chart
|
250 |
+
text=f"<b>Version Comparison:</b> {abs(improvement):.2f}% {change_text} from v0.4.1 to v0.4.2",
|
251 |
+
showarrow=False,
|
252 |
+
font=dict(
|
253 |
+
family="Arial, sans-serif",
|
254 |
+
size=16,
|
255 |
+
color=change_color,
|
256 |
+
weight="bold"
|
257 |
+
),
|
258 |
+
bgcolor="rgba(255, 255, 255, 0.9)",
|
259 |
+
bordercolor=change_color,
|
260 |
+
borderwidth=2,
|
261 |
+
borderpad=6,
|
262 |
+
opacity=0.9
|
263 |
+
)
|
264 |
+
|
265 |
+
# Update the shapes to match the actual x-axis range
|
266 |
+
num_boxes = len(sorted_hashes)
|
267 |
+
fig.update_shapes(
|
268 |
+
dict(x0=-0.5, x1=num_boxes - 0.5),
|
269 |
+
selector=dict(type='rect')
|
270 |
+
)
|
271 |
+
fig.update_shapes(
|
272 |
+
dict(x0=-0.5, x1=num_boxes - 0.5),
|
273 |
+
selector=dict(type='line')
|
274 |
+
)
|
275 |
+
|
276 |
+
# Update layout with improved styling
|
277 |
+
fig.update_layout(
|
278 |
+
title=dict(
|
279 |
+
text="APR Values by Agent Version",
|
280 |
+
font=dict(
|
281 |
+
family="Arial, sans-serif",
|
282 |
+
size=24, # Larger title
|
283 |
+
color="black",
|
284 |
+
weight="bold"
|
285 |
+
),
|
286 |
+
x=0.5, # Center the title
|
287 |
+
y=0.95 # Position slightly higher
|
288 |
+
),
|
289 |
+
xaxis_title=dict(
|
290 |
+
text="Agent Version",
|
291 |
+
font=dict(
|
292 |
+
family="Arial, sans-serif",
|
293 |
+
size=18, # Larger axis title
|
294 |
+
color="black",
|
295 |
+
weight="bold"
|
296 |
+
)
|
297 |
+
),
|
298 |
+
yaxis_title=None, # Remove the y-axis title as we'll use annotations instead
|
299 |
+
template="plotly_white",
|
300 |
+
height=700, # Increased height for better visualization
|
301 |
+
width=900, # Set a fixed width for better proportions
|
302 |
+
autosize=True, # Still enable auto-sizing for responsiveness
|
303 |
+
boxmode='group', # Group boxes together
|
304 |
+
margin=dict(r=50, l=120, t=100, b=100), # Reduced right margin since guide was removed
|
305 |
+
hovermode="closest",
|
306 |
+
plot_bgcolor='rgba(250,250,250,0.9)', # Slightly off-white background
|
307 |
+
paper_bgcolor='white',
|
308 |
+
font=dict(
|
309 |
+
family="Arial, sans-serif",
|
310 |
+
size=14,
|
311 |
+
color="black"
|
312 |
+
),
|
313 |
+
showlegend=False
|
314 |
+
)
|
315 |
+
|
316 |
+
# Add annotations for y-axis regions
|
317 |
+
fig.add_annotation(
|
318 |
+
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels
|
319 |
+
y=-25, # Middle of the negative region
|
320 |
+
xref="paper",
|
321 |
+
yref="y",
|
322 |
+
text="Percent drawdown [%]",
|
323 |
+
showarrow=False,
|
324 |
+
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
|
325 |
+
textangle=-90, # Rotate text to be vertical
|
326 |
+
align="center"
|
327 |
+
)
|
328 |
+
|
329 |
+
fig.add_annotation(
|
330 |
+
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels
|
331 |
+
y=50, # Middle of the positive region
|
332 |
+
xref="paper",
|
333 |
+
yref="y",
|
334 |
+
text="Agent APR [%]",
|
335 |
+
showarrow=False,
|
336 |
+
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
|
337 |
+
textangle=-90, # Rotate text to be vertical
|
338 |
+
align="center"
|
339 |
+
)
|
340 |
+
|
341 |
+
# Box plot guide removed as per user request
|
342 |
+
|
343 |
+
# Update y-axis with fixed range of -50 to +100 for psychological effect
|
344 |
+
fig.update_yaxes(
|
345 |
+
showgrid=True,
|
346 |
+
gridwidth=1,
|
347 |
+
gridcolor='rgba(0,0,0,0.1)',
|
348 |
+
# Use fixed range instead of autoscaling
|
349 |
+
autorange=False, # Disable autoscaling
|
350 |
+
range=[-50, 100], # Set fixed range from -50 to +100
|
351 |
+
tickformat=".2f", # Format tick labels with 2 decimal places
|
352 |
+
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
|
353 |
+
title=None # Remove the built-in axis title since we're using annotations
|
354 |
+
)
|
355 |
+
|
356 |
+
# Update x-axis with custom labels
|
357 |
+
fig.update_xaxes(
|
358 |
+
showgrid=True,
|
359 |
+
gridwidth=1,
|
360 |
+
gridcolor='rgba(0,0,0,0.1)',
|
361 |
+
tickmode='array',
|
362 |
+
tickvals=x_positions,
|
363 |
+
ticktext=x_labels,
|
364 |
+
tickangle=-45, # Angle the labels for better readability
|
365 |
+
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold") # Adjusted font size
|
366 |
+
)
|
367 |
+
|
368 |
+
try:
|
369 |
+
# Save the figure
|
370 |
+
graph_file = "modius_apr_vs_agent_hash_graph.html"
|
371 |
+
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|
372 |
+
|
373 |
+
# Also save as image for compatibility
|
374 |
+
img_file = "modius_apr_vs_agent_hash_graph.png"
|
375 |
+
try:
|
376 |
+
fig.write_image(img_file)
|
377 |
+
logger.info(f"APR vs agent hash graph saved to {graph_file} and {img_file}")
|
378 |
+
except Exception as e:
|
379 |
+
logger.error(f"Error saving image: {e}")
|
380 |
+
logger.info(f"APR vs agent hash graph saved to {graph_file} only")
|
381 |
+
|
382 |
+
# Return the figure object for direct use in Gradio
|
383 |
+
return fig
|
384 |
+
except Exception as e:
|
385 |
+
logger.error(f"Error creating APR vs agent hash graph: {e}")
|
386 |
+
|
387 |
+
# Create a simpler graph as fallback
|
388 |
+
simple_fig = go.Figure()
|
389 |
+
|
390 |
+
# Add zero line
|
391 |
+
simple_fig.add_shape(
|
392 |
+
type="line",
|
393 |
+
line=dict(dash="solid", width=1.5, color="black"),
|
394 |
+
y0=0, y1=0,
|
395 |
+
x0=-0.5, x1=1.5 # Fixed values for error case
|
396 |
+
)
|
397 |
+
|
398 |
+
# Add a note about the error
|
399 |
+
simple_fig.add_annotation(
|
400 |
+
text=f"Error creating graph: {str(e)}",
|
401 |
+
x=0.5, y=0.5,
|
402 |
+
showarrow=False,
|
403 |
+
font=dict(size=15, color="red")
|
404 |
+
)
|
405 |
+
|
406 |
+
return simple_fig
|
407 |
+
|
408 |
+
def save_apr_vs_agent_hash_to_csv(df):
|
409 |
+
"""
|
410 |
+
Save the APR vs agent hash data to a CSV file.
|
411 |
+
|
412 |
+
Args:
|
413 |
+
df: DataFrame containing the APR data with agent_hash column
|
414 |
+
|
415 |
+
Returns:
|
416 |
+
The path to the saved CSV file, or None if no data was saved
|
417 |
+
"""
|
418 |
+
if df.empty or 'agent_hash' not in df.columns:
|
419 |
+
logger.error("No data or agent_hash column not found to save to CSV")
|
420 |
+
return None
|
421 |
+
|
422 |
+
# Filter for APR data only and ensure agent_hash is not null
|
423 |
+
apr_data = df[(df['metric_type'] == 'APR') & (df['agent_hash'].notna())].copy()
|
424 |
+
|
425 |
+
if apr_data.empty:
|
426 |
+
logger.error("No valid APR data with agent_hash found to save to CSV")
|
427 |
+
return None
|
428 |
+
|
429 |
+
# Define the CSV file path
|
430 |
+
csv_file = "modius_apr_vs_agent_hash.csv"
|
431 |
+
|
432 |
+
# Save to CSV
|
433 |
+
apr_data.to_csv(csv_file, index=False)
|
434 |
+
logger.info(f"APR vs agent hash data saved to {csv_file}")
|
435 |
+
|
436 |
+
return csv_file
|
437 |
+
|
438 |
+
def generate_apr_vs_agent_hash_visualizations(df):
|
439 |
+
"""
|
440 |
+
Generate APR vs agent hash visualizations.
|
441 |
+
|
442 |
+
Args:
|
443 |
+
df: DataFrame containing the APR data
|
444 |
+
|
445 |
+
Returns:
|
446 |
+
A tuple containing the Plotly figure object and the path to the saved CSV file
|
447 |
+
"""
|
448 |
+
if df.empty:
|
449 |
+
logger.info("No APR data available for agent hash visualization.")
|
450 |
+
# Create empty visualization with a message using Plotly
|
451 |
+
fig = go.Figure()
|
452 |
+
fig.add_annotation(
|
453 |
+
x=0.5, y=0.5,
|
454 |
+
text="No APR data available for agent hash visualization",
|
455 |
+
font=dict(size=20),
|
456 |
+
showarrow=False
|
457 |
+
)
|
458 |
+
fig.update_layout(
|
459 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
460 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
|
461 |
+
)
|
462 |
+
|
463 |
+
return fig, None
|
464 |
+
|
465 |
+
# Check if agent_hash column exists
|
466 |
+
if 'agent_hash' not in df.columns:
|
467 |
+
logger.error("agent_hash column not found in DataFrame")
|
468 |
+
fig = go.Figure()
|
469 |
+
fig.add_annotation(
|
470 |
+
x=0.5, y=0.5,
|
471 |
+
text="agent_hash column not found in data",
|
472 |
+
font=dict(size=20),
|
473 |
+
showarrow=False
|
474 |
+
)
|
475 |
+
fig.update_layout(
|
476 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
477 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
|
478 |
+
)
|
479 |
+
|
480 |
+
return fig, None
|
481 |
+
|
482 |
+
# Save to CSV before creating visualization
|
483 |
+
csv_file = save_apr_vs_agent_hash_to_csv(df)
|
484 |
+
|
485 |
+
# Create the visualization
|
486 |
+
fig = create_apr_vs_agent_hash_graph(df)
|
487 |
+
|
488 |
+
return fig, csv_file
|