Spaces:
Runtime error
Runtime error
import requests | |
import pandas as pd | |
import gradio as gr | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from datetime import datetime, timedelta | |
import json | |
from web3 import Web3 | |
import os | |
from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations | |
# Load environment variables from .env file | |
# RPC URLs | |
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL') | |
MODE_RPC_URL = os.getenv('MODE_RPC_URL') | |
# Initialize Web3 instances | |
web3_instances = { | |
'optimism': Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL)), | |
'mode': Web3(Web3.HTTPProvider(MODE_RPC_URL)) | |
} | |
# Contract addresses for service registries | |
contract_addresses = { | |
'optimism': '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44', | |
'mode': '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE' | |
} | |
# Load the ABI from the provided JSON file | |
with open('./contracts/service_registry_abi.json', 'r') as abi_file: | |
contract_abi = json.load(abi_file) | |
# Create the contract instances | |
service_registries = { | |
chain_name: web3.eth.contract(address=contract_addresses[chain_name], abi=contract_abi) | |
for chain_name, web3 in web3_instances.items() | |
} | |
# Check if connections are successful | |
for chain_name, web3_instance in web3_instances.items(): | |
if not web3_instance.is_connected(): | |
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.") | |
else: | |
print(f"Successfully connected to the {chain_name.capitalize()} network.") | |
def get_transfers(integrator: str, wallet: str) -> str: | |
url = f"https://li.quest/v1/analytics/transfers?&wallet={wallet}&fromTimestamp=1726165800" | |
headers = {"accept": "application/json"} | |
response = requests.get(url, headers=headers) | |
return response.json() | |
def fetch_and_aggregate_transactions(): | |
aggregated_transactions = [] | |
daily_agent_counts = {} | |
seen_agents = set() | |
for chain_name, service_registry in service_registries.items(): | |
web3 = web3_instances[chain_name] | |
total_services = service_registry.functions.totalSupply().call() | |
for service_id in range(1, total_services + 1): | |
service = service_registry.functions.getService(service_id).call() | |
agent_ids = service[-1] | |
if 40 in agent_ids or 25 in agent_ids: | |
agent_instance_data = service_registry.functions.getAgentInstances(service_id).call() | |
agent_addresses = agent_instance_data[1] | |
if agent_addresses: | |
agent_address = agent_addresses[0] | |
response_transfers = get_transfers("valory", agent_address) | |
transfers = response_transfers.get("transfers", []) | |
if isinstance(transfers, list): | |
aggregated_transactions.extend(transfers) | |
# Track the daily number of agents | |
current_date = "" | |
creation_event = service_registry.events.CreateService.create_filter(from_block=0, argument_filters={'serviceId': service_id}).get_all_entries() | |
if creation_event: | |
block_number = creation_event[0]['blockNumber'] | |
block = web3.eth.get_block(block_number) | |
creation_timestamp = datetime.fromtimestamp(block['timestamp']) | |
date_str = creation_timestamp.strftime('%Y-%m-%d') | |
current_date = date_str | |
# Ensure each agent is only counted once based on first registered date | |
if agent_address not in seen_agents: | |
seen_agents.add(agent_address) | |
if date_str not in daily_agent_counts: | |
daily_agent_counts[date_str] = set() | |
daily_agent_counts[date_str].add(agent_address) | |
daily_agent_counts = {date: len(agents) for date, agents in daily_agent_counts.items()} | |
return aggregated_transactions, daily_agent_counts | |
# Function to parse the transaction data and prepare it for visualization | |
def process_transactions_and_agents(data): | |
transactions, daily_agent_counts = data | |
# Convert the data into a pandas DataFrame for easy manipulation | |
rows = [] | |
for tx in transactions: | |
# Normalize amounts | |
sending_amount = float(tx["sending"]["amount"]) / (10 ** tx["sending"]["token"]["decimals"]) | |
receiving_amount = float(tx["receiving"]["amount"]) / (10 ** tx["receiving"]["token"]["decimals"]) | |
# Convert timestamps to datetime objects | |
sending_timestamp = datetime.utcfromtimestamp(tx["sending"]["timestamp"]) | |
receiving_timestamp = datetime.utcfromtimestamp(tx["receiving"]["timestamp"]) | |
# Prepare row data | |
rows.append({ | |
"transactionId": tx["transactionId"], | |
"from_address": tx["fromAddress"], | |
"to_address": tx["toAddress"], | |
"sending_chain": tx["sending"]["chainId"], | |
"receiving_chain": tx["receiving"]["chainId"], | |
"sending_token_symbol": tx["sending"]["token"]["symbol"], | |
"receiving_token_symbol": tx["receiving"]["token"]["symbol"], | |
"sending_amount": sending_amount, | |
"receiving_amount": receiving_amount, | |
"sending_amount_usd": float(tx["sending"]["amountUSD"]), | |
"receiving_amount_usd": float(tx["receiving"]["amountUSD"]), | |
"sending_gas_used": int(tx["sending"]["gasUsed"]), | |
"receiving_gas_used": int(tx["receiving"]["gasUsed"]), | |
"sending_timestamp": sending_timestamp, | |
"receiving_timestamp": receiving_timestamp, | |
"date": sending_timestamp.date(), # Group by day | |
"week": sending_timestamp.strftime('%Y-%m-%d') # Group by week | |
}) | |
df_transactions = pd.DataFrame(rows) | |
df_transactions = df_transactions.drop_duplicates() | |
df_agents = pd.DataFrame(list(daily_agent_counts.items()), columns=['date', 'agent_count']) | |
df_agents['date'] = pd.to_datetime(df_agents['date']) | |
df_agents['week'] = df_agents['date'].dt.to_period('W').apply(lambda r: r.start_time) | |
df_agents_weekly = df_agents[['week', 'agent_count']].groupby('week').sum().reset_index() | |
return df_transactions, df_agents, df_agents_weekly | |
# Function to create visualizations based on the metrics | |
def create_visualizations(): | |
transactions_data = fetch_and_aggregate_transactions() | |
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data) | |
# Fetch daily value locked data | |
df_tvl = pd.read_csv('daily_value_locked.csv') | |
# Calculate total value locked per chain per day | |
df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"] | |
df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index() | |
df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date']) | |
# Filter out dates with zero total value locked | |
df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0] | |
chain_name_map = { | |
"mode": "Mode", | |
"base": "Base", | |
"ethereum": "Ethereum", | |
"optimism": "Optimism" | |
} | |
df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map) | |
# Plot total value locked | |
fig_tvl = px.bar( | |
df_tvl_daily, | |
x="date", | |
y="total_value_locked_usd", | |
color="chain_name", | |
opacity=0.7, | |
title="Total Volume Invested in Pools in Different Chains Daily", | |
labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"}, | |
barmode='stack', | |
color_discrete_map={ | |
"Mode": "orange", | |
"Base": "purple", | |
"Ethereum": "darkgreen", | |
"Optimism": "blue" | |
} | |
) | |
fig_tvl.update_layout( | |
xaxis_title="Date", | |
yaxis=dict(tickmode='linear', tick0=0, dtick=4), | |
xaxis=dict( | |
tickmode='array', | |
tickvals=df_tvl_daily['date'], | |
ticktext=df_tvl_daily['date'].dt.strftime('%b %d'), | |
tickangle=-45, | |
), | |
bargap=0.6, # Increase gap between bar groups (0-1) | |
bargroupgap=0.1, # Decrease gap between bars in a group (0-1) | |
height=600, | |
width=1200, # Specify width to prevent bars from being too wide | |
showlegend=True, | |
template='plotly_white' | |
) | |
fig_tvl.update_xaxes(tickformat="%b %d") | |
chain_name_map = { | |
10: "Optimism", | |
8453: "Base", | |
1: "Ethereum", | |
34443: "Mode" | |
} | |
df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map) | |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map) | |
df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str) | |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str) | |
df_transactions['date'] = pd.to_datetime(df_transactions['date']) | |
df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_chain"] == x["receiving_chain"], axis=1) | |
swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count") | |
fig_swaps_chain = px.bar( | |
swaps_per_chain, | |
x="date", | |
y="swap_count", | |
color="sending_chain", | |
title="Chain Daily Activity: Swaps", | |
labels={"sending_chain": "Transaction Chain", "swap_count": "Daily Swap Nr"}, | |
barmode="stack", | |
opacity=0.7, | |
color_discrete_map={ | |
"Optimism": "blue", | |
"Ethereum": "darkgreen", | |
"Base": "purple", | |
"Mode": "orange" | |
} | |
) | |
fig_swaps_chain.update_layout( | |
xaxis_title="Date", | |
yaxis_title="Daily Swap Count", | |
yaxis=dict(tickmode='linear', tick0=0, dtick=1), | |
xaxis=dict( | |
tickmode='array', | |
tickvals=[d for d in swaps_per_chain['date']], | |
ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date']], | |
tickangle=-45, | |
), | |
bargap=0.6, | |
bargroupgap=0.1, | |
height=600, | |
width=1200, | |
margin=dict(l=50, r=50, t=50, b=50), | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="right", | |
x=0.99 | |
), | |
template='plotly_white' | |
) | |
fig_swaps_chain.update_xaxes(tickformat="%m-%d") | |
df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1) | |
bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count") | |
fig_bridges_chain = px.bar( | |
bridges_per_chain, | |
x="date", | |
y="bridge_count", | |
color="sending_chain", | |
title="Chain Daily Activity: Bridges", | |
labels={"sending_chain": "Transaction Chain", "bridge_count": "Daily Bridge Nr"}, | |
barmode="stack", | |
opacity=0.7, | |
color_discrete_map={ | |
"Optimism": "blue", | |
"Ethereum": "darkgreen", | |
"Base": "purple", | |
"Mode": "orange" | |
} | |
) | |
fig_bridges_chain.update_layout( | |
xaxis_title="Date", | |
yaxis_title="Daily Bridge Count", | |
yaxis=dict(tickmode='linear', tick0=0, dtick=1), | |
xaxis=dict( | |
tickmode='array', | |
tickvals=[d for d in bridges_per_chain['date']], | |
ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date']], | |
tickangle=-45, | |
), | |
bargap=0.6, | |
bargroupgap=0.1, | |
height=600, | |
width=1200, | |
margin=dict(l=50, r=50, t=50, b=50), | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="right", | |
x=0.99 | |
), | |
template='plotly_white' | |
) | |
fig_bridges_chain.update_xaxes(tickformat="%m-%d") | |
df_agents['date'] = pd.to_datetime(df_agents['date']) | |
daily_agents_df = df_agents.groupby('date').agg({'agent_count': 'sum'}).reset_index() | |
daily_agents_df.rename(columns={'agent_count': 'daily_agent_count'}, inplace=True) | |
# Sort by date to ensure proper running total calculation | |
daily_agents_df = daily_agents_df.sort_values('date') | |
# Create week column | |
daily_agents_df['week'] = daily_agents_df['date'].dt.to_period('W').apply(lambda r: r.start_time) | |
# Calculate running total within each week | |
daily_agents_df['running_weekly_total'] = daily_agents_df.groupby('week')['daily_agent_count'].cumsum() | |
# Create final merged dataframe | |
weekly_merged_df = daily_agents_df.copy() | |
adjustment_date = pd.to_datetime('2024-11-15') | |
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'daily_agent_count'] -= 1 | |
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'running_weekly_total'] -= 1 | |
fig_agents_registered = go.Figure(data=[ | |
go.Bar( | |
name='Daily nr of Registered Agents', | |
x=weekly_merged_df['date'].dt.strftime("%b %d"), | |
y=weekly_merged_df['daily_agent_count'], | |
opacity=0.7, | |
marker_color='blue' | |
), | |
go.Bar( | |
name='Weekly Nr of Registered Agents', | |
x=weekly_merged_df['date'].dt.strftime("%b %d"), | |
y=weekly_merged_df['running_weekly_total'], | |
opacity=0.7, | |
marker_color='purple' | |
) | |
]) | |
fig_agents_registered.update_layout( | |
xaxis_title='Date', | |
yaxis_title='Number of Agents', | |
title="Nr of Agents Registered", | |
barmode='group', | |
yaxis=dict(tickmode='linear', tick0=0, dtick=1), | |
xaxis=dict( | |
categoryorder='array', | |
categoryarray=weekly_merged_df['date'].dt.strftime("%b %d"), | |
tickangle=-45 | |
), | |
bargap=0.3, | |
height=600, | |
width=1200, | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
xanchor="right", | |
), | |
template='plotly_white', | |
) | |
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl | |
# Gradio interface | |
def dashboard(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# Valory Transactions Dashboard") | |
with gr.Tab("Chain Daily activity"): | |
fig_tx_chain = create_transcation_visualizations() | |
gr.Plot(fig_tx_chain) | |
fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl = create_visualizations() | |
with gr.Tab("Swaps Daily"): | |
gr.Plot(fig_swaps_chain) | |
with gr.Tab("Bridges Daily"): | |
gr.Plot(fig_bridges_chain) | |
with gr.Tab("Nr of Agents Registered"): | |
gr.Plot(fig_agents_registered) | |
with gr.Tab("DAA"): | |
fig_agents_with_transactions_daily = create_active_agents_visualizations() | |
gr.Plot(fig_agents_with_transactions_daily) | |
with gr.Tab("Total Value Locked"): | |
gr.Plot(fig_tvl) | |
return demo | |
# Launch the dashboard | |
if __name__ == "__main__": | |
dashboard().launch() |