abdulmatinomotoso's picture
Create app.py
4dad73d
raw
history blame
1.35 kB
#importing the necessary libraries
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from keybert import KeyBERT
from keyphrase_vectorizers import KeyphraseCountVectorizer
# Defining a function to read in the text file
def read_in_text(url):
with open(url, 'r') as file:
article = file.read()
return article
tmp_model = SentenceTransformer('valurank/MiniLM-L6-Keyword-Extraction')
kw_extractor = KeyBERT(tmp_model)
def get_keybert_results_with_vectorizer(file, number_of_results=20):
try:
text = read_in_text(file.name)
keywords = kw_extractor.extract_keywords(text, vectorizer=KeyphraseCountVectorizer(), stop_words=None, top_n=number_of_results)
keywords = [i for i in keywords if i[1] >= 0.25]
keybert_diversity_phrases = []
for i, j in keywords:
keybert_diversity_phrases.append(i)
output_df = pd.DataFrame()
output_df['keyword'] = np.array(keybert_diversity_phrases)
return output_df.head(20)
except Exception:
return "Error"
demo = gr.Interface(get_keybert_results_with_vectorizer, inputs=gr.inputs.File(),
outputs=gr.outputs.Dataframe(),
title = "Keyword Extraction")
if __name__ == "__main__":
demo.launch(debug=True)