File size: 26,476 Bytes
0ad40ce a93e85e 0ad40ce a93e85e 0ad40ce a93e85e 318c146 0ad40ce 8e115d0 a93e85e 8e115d0 0ad40ce 8af57c5 a93e85e 0ad40ce a93e85e 0ad40ce d44a8b8 0ad40ce a93e85e 0ad40ce 15eadf4 0ad40ce a93e85e 15eadf4 a93e85e 0ad40ce a93e85e 0ad40ce a93e85e 0ad40ce a93e85e 0ad40ce a93e85e 0ad40ce a93e85e 0ad40ce a93e85e 0ad40ce 318c146 a93e85e 8e115d0 318c146 8e115d0 0ad40ce a93e85e 0ad40ce a93e85e 8af57c5 a93e85e d44a8b8 a93e85e d44a8b8 949c8ba d44a8b8 949c8ba d44a8b8 a93e85e d44a8b8 a93e85e d44a8b8 949c8ba d44a8b8 a93e85e d44a8b8 a93e85e d44a8b8 949c8ba d44a8b8 a93e85e d44a8b8 949c8ba d44a8b8 a93e85e d44a8b8 a93e85e d44a8b8 a93e85e 832b728 8af57c5 a93e85e 8af57c5 949c8ba 8af57c5 949c8ba 8af57c5 832b728 8af57c5 a93e85e 832b728 a93e85e 949c8ba a93e85e 8af57c5 a93e85e 8af57c5 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 8af57c5 a93e85e 949c8ba 8af57c5 a93e85e 8af57c5 a93e85e 8af57c5 a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 8af57c5 d44a8b8 0ad40ce d44a8b8 949c8ba 0ad40ce d44a8b8 a93e85e d44a8b8 a93e85e d44a8b8 949c8ba d44a8b8 832b728 a93e85e 832b728 a93e85e 832b728 a93e85e 832b728 a93e85e d44a8b8 949c8ba 832b728 8af57c5 832b728 a93e85e d44a8b8 8af57c5 832b728 a93e85e 832b728 949c8ba a93e85e 949c8ba a93e85e 8af57c5 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba a93e85e 949c8ba 832b728 8af57c5 a93e85e 832b728 949c8ba a93e85e 949c8ba a93e85e 949c8ba 8af57c5 a93e85e 8af57c5 949c8ba a93e85e 949c8ba a93e85e 8af57c5 949c8ba a93e85e 832b728 a93e85e 832b728 a93e85e 832b728 a93e85e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
import os
import re
import streamlit as st
from tempfile import NamedTemporaryFile
import anthropic
# Import necessary modules from LangChain
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader, TextLoader
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Function to remove code block markers from the answer
def remove_code_blocks(text):
"""
Removes code block markers from the answer text.
Args:
text (str): The text from which code block markers should be removed.
Returns:
str: The text without code block markers.
"""
code_block_pattern = r"^```(?:\w+)?\n(.*?)\n```$"
match = re.match(code_block_pattern, text, re.DOTALL)
if match:
return match.group(1).strip()
else:
return text
# Function to process PDF, run Q&A, and return results
def process_pdf(api_key, uploaded_file, questions_path, prompt_path, display_placeholder):
"""
Processes a PDF file, runs Q&A, and returns the results.
Args:
api_key (str): OpenAI API key.
uploaded_file: Uploaded PDF file.
questions_path (str): Path to the questions file.
prompt_path (str): Path to the system prompt file.
display_placeholder: Streamlit placeholder for displaying results.
Returns:
list: List of QA results.
"""
# Set the OpenAI API key
os.environ["OPENAI_API_KEY"] = api_key
# Save the uploaded PDF to a temporary file
with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
temp_pdf.write(uploaded_file.read())
temp_pdf_path = temp_pdf.name
# Load and split the PDF into documents
loader = PyPDFLoader(temp_pdf_path)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500)
splits = text_splitter.split_documents(docs)
# Create a vector store from the documents
vectorstore = FAISS.from_documents(
documents=splits,
embedding=OpenAIEmbeddings(model="text-embedding-3-large")
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 10})
# Load the system prompt
if os.path.exists(prompt_path):
with open(prompt_path, "r") as file:
system_prompt = file.read()
else:
raise FileNotFoundError(f"The specified file was not found: {prompt_path}")
# Create the prompt template
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
# Initialize the language model
llm = ChatOpenAI(model="gpt-4o")
# Create the question-answering chain
question_answer_chain = create_stuff_documents_chain(
llm, prompt, document_variable_name="context"
)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
# Load the questions
if os.path.exists(questions_path):
with open(questions_path, "r") as file:
questions = [line.strip() for line in file.readlines() if line.strip()]
else:
raise FileNotFoundError(f"The specified file was not found: {questions_path}")
# Process each question
qa_results = []
for question in questions:
result = rag_chain.invoke({"input": question})
answer = result["answer"]
# Remove code block markers
answer = remove_code_blocks(answer)
qa_text = f"### Question: {question}\n**Answer:**\n{answer}\n"
qa_results.append(qa_text)
display_placeholder.markdown("\n".join(qa_results), unsafe_allow_html=True)
# Clean up temporary PDF file
os.remove(temp_pdf_path)
return qa_results
# Function to perform multi-plan QA using an existing vector store
def process_multi_plan_qa(api_key, input_text, display_placeholder):
"""
Performs multi-plan QA using an existing shared vector store.
Args:
api_key (str): OpenAI API key.
input_text (str): The question to ask.
display_placeholder: Streamlit placeholder for displaying results.
"""
# Set the OpenAI API key
os.environ["OPENAI_API_KEY"] = api_key
# Load the existing vector store
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
vector_store = FAISS.load_local(
"Combined_Summary_Vectorstore",
embeddings,
allow_dangerous_deserialization=True
)
# Convert the vector store to a retriever
retriever = vector_store.as_retriever(search_kwargs={"k": 50})
# Read the system prompt for multi-document QA
prompt_path = "Prompts/multi_document_qa_system_prompt.md"
if os.path.exists(prompt_path):
with open(prompt_path, "r") as file:
system_prompt = file.read()
else:
raise FileNotFoundError(f"The specified file was not found: {prompt_path}")
# Create the prompt template
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
# Create the question-answering chain
llm = ChatOpenAI(model="gpt-4o")
question_answer_chain = create_stuff_documents_chain(
llm, prompt, document_variable_name="context"
)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
# Process the input text
result = rag_chain.invoke({"input": input_text})
answer = result["answer"]
# Display the answer
display_placeholder.markdown(f"**Answer:**\n{answer}")
# Function to perform multi-plan QA using multiple individual vector stores
def process_multi_plan_qa_multi_vectorstore(api_key, input_text, display_placeholder):
"""
Performs multi-plan QA using multiple individual vector stores.
Args:
api_key (str): OpenAI API key.
input_text (str): The question to ask.
display_placeholder: Streamlit placeholder for displaying results.
"""
# Set the OpenAI API key
os.environ["OPENAI_API_KEY"] = api_key
# Directory containing individual vector stores
vectorstore_directory = "Individual_Summary_Vectorstores"
# List all vector store directories
vectorstore_names = [
d for d in os.listdir(vectorstore_directory)
if os.path.isdir(os.path.join(vectorstore_directory, d))
]
# Initialize a list to collect all retrieved chunks
all_retrieved_chunks = []
# Process each vector store
for vectorstore_name in vectorstore_names:
vectorstore_path = os.path.join(vectorstore_directory, vectorstore_name)
# Load the vector store
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
vector_store = FAISS.load_local(
vectorstore_path,
embeddings,
allow_dangerous_deserialization=True
)
# Convert the vector store to a retriever
retriever = vector_store.as_retriever(search_kwargs={"k": 2})
# Retrieve relevant chunks for the input text
retrieved_chunks = retriever.invoke(input_text)
all_retrieved_chunks.extend(retrieved_chunks)
# Read the system prompt for multi-document QA
prompt_path = "Prompts/multi_document_qa_system_prompt.md"
if os.path.exists(prompt_path):
with open(prompt_path, "r") as file:
system_prompt = file.read()
else:
raise FileNotFoundError(f"The specified file was not found: {prompt_path}")
# Create the prompt template
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
# Create the question-answering chain
llm = ChatOpenAI(model="gpt-4o")
question_answer_chain = create_stuff_documents_chain(
llm, prompt, document_variable_name="context"
)
# Process the combined context
result = question_answer_chain.invoke({
"input": input_text,
"context": all_retrieved_chunks
})
# Display the answer
answer = result["answer"] if "answer" in result else result
display_placeholder.markdown(f"**Answer:**\n{answer}")
def load_documents_from_pdf(file):
"""
Loads documents from a PDF file.
Args:
file: Uploaded PDF file.
Returns:
list: List of documents.
"""
# Check if the file is a PDF
if not file.name.endswith('.pdf'):
raise ValueError("The uploaded file is not a PDF. Please upload a PDF file.")
with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
temp_pdf.write(file.read())
temp_pdf_path = temp_pdf.name
loader = PyPDFLoader(temp_pdf_path)
docs = loader.load()
os.remove(temp_pdf_path)
return docs
def load_vector_store_from_path(path):
"""
Loads a vector store from a given path.
Args:
path (str): Path to the vector store.
Returns:
FAISS: Loaded vector store.
"""
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
return FAISS.load_local(
path,
embeddings,
allow_dangerous_deserialization=True
)
# Function to compare documents via one-to-many query approach
def process_one_to_many_query(api_key, focus_input, comparison_inputs, input_text, display_placeholder):
"""
Compares a focus document against multiple comparison documents using a one-to-many query approach.
Args:
api_key (str): OpenAI API key.
focus_input: Focus document (uploaded file or path to vector store).
comparison_inputs: List of comparison documents (uploaded files or paths to vector stores).
input_text (str): The comparison question to ask.
display_placeholder: Streamlit placeholder for displaying results.
"""
# Set the OpenAI API key
os.environ["OPENAI_API_KEY"] = api_key
print(comparison_inputs)
# Load focus documents or vector store
if isinstance(focus_input, st.runtime.uploaded_file_manager.UploadedFile):
# If focus_input is an uploaded PDF file
focus_docs = load_documents_from_pdf(focus_input)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500)
focus_splits = text_splitter.split_documents(focus_docs)
focus_vector_store = FAISS.from_documents(
focus_splits,
OpenAIEmbeddings(model="text-embedding-3-large")
)
focus_retriever = focus_vector_store.as_retriever(search_kwargs={"k": 5})
elif isinstance(focus_input, str) and os.path.isdir(focus_input):
# If focus_input is a path to a vector store
focus_vector_store = load_vector_store_from_path(focus_input)
focus_retriever = focus_vector_store.as_retriever(search_kwargs={"k": 5})
else:
raise ValueError("Invalid focus input type. Must be a PDF file or a path to a vector store.")
# Retrieve relevant chunks from the focus document
focus_docs = focus_retriever.invoke(input_text)
# Initialize list to collect comparison chunks
comparison_chunks = []
for comparison_input in comparison_inputs:
if isinstance(comparison_input, st.runtime.uploaded_file_manager.UploadedFile):
# If comparison_input is an uploaded PDF file
comparison_docs = load_documents_from_pdf(comparison_input)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=500)
comparison_splits = text_splitter.split_documents(comparison_docs)
comparison_vector_store = FAISS.from_documents(
comparison_splits,
OpenAIEmbeddings(model="text-embedding-3-large")
)
comparison_retriever = comparison_vector_store.as_retriever(search_kwargs={"k": 5})
elif isinstance(comparison_input, str) and os.path.isdir(comparison_input):
# If comparison_input is a path to a vector store
comparison_vector_store = load_vector_store_from_path(comparison_input)
comparison_retriever = comparison_vector_store.as_retriever(search_kwargs={"k": 5})
else:
raise ValueError("Invalid comparison input type. Must be a PDF file or a path to a vector store.")
# Retrieve relevant chunks from the comparison document
comparison_docs = comparison_retriever.invoke(input_text)
comparison_chunks.extend(comparison_docs)
# Construct the combined context
combined_context = focus_docs + comparison_chunks
# Read the system prompt
prompt_path = "Prompts/comparison_prompt.md"
if os.path.exists(prompt_path):
with open(prompt_path, "r") as file:
system_prompt = file.read()
else:
raise FileNotFoundError(f"The specified file was not found: {prompt_path}")
# Create the prompt template
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}")
]
)
# Create the question-answering chain
llm = ChatOpenAI(model="gpt-4o")
question_answer_chain = create_stuff_documents_chain(
llm,
prompt,
document_variable_name="context"
)
# Process the combined context
result = question_answer_chain.invoke({
"context": combined_context,
"input": input_text
})
# Display the answer
answer = result["answer"] if "answer" in result else result
display_placeholder.markdown(f"**Answer:**\n{answer}")
# Function to list vector store documents
def list_vector_store_documents():
"""
Lists available vector store documents.
Returns:
list: List of document names.
"""
# Assuming documents are stored in the "Individual_All_Vectorstores" directory
directory_path = "Individual_All_Vectorstores"
if not os.path.exists(directory_path):
raise FileNotFoundError(
f"The directory '{directory_path}' does not exist. "
"Run `create_and_save_individual_vector_stores()` to create it."
)
# List all available vector stores by document name
documents = [
f.replace("_vectorstore", "").replace("_", " ")
for f in os.listdir(directory_path)
if f.endswith("_vectorstore")
]
return documents
# Function to compare plans using a long context model
def compare_with_long_context(api_key, anthropic_api_key, input_text, focus_plan_path, selected_summaries, display_placeholder):
"""
Compares plans using a long context model.
Args:
api_key (str): OpenAI API key.
anthropic_api_key (str): Anthropic API key.
input_text (str): The comparison question to ask.
focus_plan_path: Path to the focus plan or uploaded file.
selected_summaries (list): List of selected summary documents.
display_placeholder: Streamlit placeholder for displaying results.
"""
# Set the API keys
os.environ["OPENAI_API_KEY"] = api_key
os.environ["ANTHROPIC_API_KEY"] = anthropic_api_key
# Load focus documents
if isinstance(focus_plan_path, st.runtime.uploaded_file_manager.UploadedFile):
# If focus_plan_path is an uploaded file
focus_docs = load_documents_from_pdf(focus_plan_path)
elif isinstance(focus_plan_path, str):
# If focus_plan_path is a file path
focus_loader = PyPDFLoader(focus_plan_path)
focus_docs = focus_loader.load()
else:
raise ValueError("Invalid focus plan input type. Must be an uploaded file or a file path.")
# Concatenate selected summary documents
summaries_directory = "CAPS_Summaries"
summaries_content = ""
for filename in selected_summaries:
# Fix the filename by replacing ' Summary' with '_Summary'
summary_filename = f"{filename.replace(' Summary', '_Summary')}.md"
with open(os.path.join(summaries_directory, summary_filename), 'r') as file:
summaries_content += file.read() + "\n\n"
# Prepare the context
focus_context = "\n\n".join([doc.page_content for doc in focus_docs])
# Create the client and message
client = anthropic.Anthropic(api_key=anthropic_api_key)
response = client.completions.create(
model="claude-2",
max_tokens_to_sample=1024,
prompt=f"{input_text}\n\nFocus Document:\n{focus_context}\n\nSummaries:\n{summaries_content}"
)
# Display the answer
answer = response.completion
display_placeholder.markdown(f"**Answer:**\n{answer}", unsafe_allow_html=True)
# Streamlit app layout with tabs
st.title("Climate Policy Analysis Tool")
# API Key Input
api_key = st.text_input("Enter your OpenAI API key:", type="password", key="openai_key")
# Create tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"Summary Generation",
"Multi-Plan QA (Shared Vectorstore)",
"Multi-Plan QA (Multi-Vectorstore)",
"Plan Comparison Tool",
"Plan Comparison with Long Context Model"
])
# First tab: Summary Generation
with tab1:
uploaded_file = st.file_uploader(
"Upload a Climate Action Plan in PDF format",
type="pdf",
key="upload_file"
)
prompt_file_path = "Prompts/summary_tool_system_prompt.md"
questions_file_path = "Prompts/summary_tool_questions.md"
if st.button("Generate", key="generate_button"):
if not api_key:
st.warning("Please provide your OpenAI API key.")
elif not uploaded_file:
st.warning("Please upload a PDF file.")
else:
display_placeholder = st.empty()
with st.spinner("Processing..."):
try:
results = process_pdf(
api_key,
uploaded_file,
questions_file_path,
prompt_file_path,
display_placeholder
)
markdown_text = "\n".join(results)
# Use the uploaded file's name for the download file
base_name = os.path.splitext(uploaded_file.name)[0]
download_file_name = f"{base_name}_Summary.md"
st.download_button(
label="Download Results as Markdown",
data=markdown_text,
file_name=download_file_name,
mime="text/markdown",
key="download_button"
)
except Exception as e:
st.error(f"An error occurred: {e}")
# Second tab: Multi-Plan QA (Shared Vectorstore)
with tab2:
input_text = st.text_input("Ask a question:", key="multi_plan_input")
if st.button("Ask", key="multi_plan_qa_button"):
if not api_key:
st.warning("Please provide your OpenAI API key.")
elif not input_text:
st.warning("Please enter a question.")
else:
display_placeholder2 = st.empty()
with st.spinner("Processing..."):
try:
process_multi_plan_qa(
api_key,
input_text,
display_placeholder2
)
except Exception as e:
st.error(f"An error occurred: {e}")
# Third tab: Multi-Plan QA (Multi-Vectorstore)
with tab3:
user_input = st.text_input("Ask a question:", key="multi_vectorstore_input")
if st.button("Ask", key="multi_vectorstore_qa_button"):
if not api_key:
st.warning("Please provide your OpenAI API key.")
elif not user_input:
st.warning("Please enter a question.")
else:
display_placeholder3 = st.empty()
with st.spinner("Processing..."):
try:
process_multi_plan_qa_multi_vectorstore(
api_key,
user_input,
display_placeholder3
)
except Exception as e:
st.error(f"An error occurred: {e}")
# Fourth tab: Plan Comparison Tool
with tab4:
st.header("Plan Comparison Tool")
# List of documents from vector stores
vectorstore_documents = list_vector_store_documents()
# Option to upload a new plan or select from existing vector stores
focus_option = st.radio(
"Choose a focus plan:",
("Select from existing vector stores", "Upload a new plan"),
key="focus_option"
)
if focus_option == "Upload a new plan":
focus_uploaded_file = st.file_uploader(
"Upload a Climate Action Plan to compare",
type="pdf",
key="focus_upload"
)
if focus_uploaded_file is not None:
# Directly use the uploaded file
focus_input = focus_uploaded_file
else:
focus_input = None
else:
# Select a focus plan from existing vector stores
selected_focus_plan = st.selectbox(
"Select a focus plan:",
vectorstore_documents,
key="select_focus_plan"
)
focus_input = os.path.join(
"Individual_All_Vectorstores",
f"{selected_focus_plan.replace(' Summary', '_Summary')}_vectorstore"
)
# Option to upload comparison documents or select from existing vector stores
comparison_option = st.radio(
"Choose comparison documents:",
("Select from existing vector stores", "Upload new documents"),
key="comparison_option"
)
if comparison_option == "Upload new documents":
comparison_files = st.file_uploader(
"Upload comparison documents",
type="pdf",
accept_multiple_files=True,
key="comparison_files"
)
comparison_inputs = comparison_files
else:
# Select comparison documents from existing vector stores
selected_comparison_plans = st.multiselect(
"Select comparison documents:",
vectorstore_documents,
key="select_comparison_plans"
)
comparison_inputs = [
os.path.join(
"Individual_All_Vectorstores",
f"{doc.replace(' Summary', '_Summary')}_vectorstore"
) for doc in selected_comparison_plans
]
input_text = st.text_input(
"Ask a comparison question:",
key="comparison_input"
)
if st.button("Compare", key="compare_button"):
if not api_key:
st.warning("Please provide your OpenAI API key.")
elif not input_text:
st.warning("Please enter a comparison question.")
elif not focus_input:
st.warning("Please provide a focus plan.")
elif not comparison_inputs:
st.warning("Please provide comparison documents.")
else:
display_placeholder4 = st.empty()
with st.spinner("Processing..."):
try:
# Call the process_one_to_many_query function
process_one_to_many_query(
api_key,
focus_input,
comparison_inputs,
input_text,
display_placeholder4
)
except Exception as e:
st.error(f"An error occurred: {e}")
# Fifth tab: Plan Comparison with Long Context Model
with tab5:
st.header("Plan Comparison with Long Context Model")
# Anthropics API Key Input
anthropic_api_key = st.text_input(
"Enter your Anthropic API key:",
type="password",
key="anthropic_key"
)
# Option to upload a new plan or select from a list
focus_option = st.radio(
"Choose a focus plan:",
("Select from existing plans", "Upload a new plan"),
key="focus_option_long_context"
)
if focus_option == "Upload a new plan":
focus_uploaded_file = st.file_uploader(
"Upload a Climate Action Plan to compare",
type="pdf",
key="focus_upload_long_context"
)
if focus_uploaded_file is not None:
# Directly use the uploaded file
focus_plan_path = focus_uploaded_file
else:
focus_plan_path = None
else:
# List of existing plans in CAPS
plan_list = [f.replace(".pdf", "") for f in os.listdir("CAPS") if f.endswith('.pdf')]
selected_focus_plan = st.selectbox(
"Select a focus plan:",
plan_list,
key="select_focus_plan_long_context"
)
focus_plan_path = os.path.join("CAPS", f"{selected_focus_plan}.pdf")
# List available summary documents for selection
summaries_directory = "CAPS_Summaries"
summary_files = [
f.replace(".md", "").replace("_", " ")
for f in os.listdir(summaries_directory) if f.endswith('.md')
]
selected_summaries = st.multiselect(
"Select summary documents for comparison:",
summary_files,
key="selected_summaries"
)
input_text = st.text_input(
"Ask a comparison question:",
key="comparison_input_long_context"
)
if st.button("Compare with Long Context", key="compare_button_long_context"):
if not api_key:
st.warning("Please provide your OpenAI API key.")
elif not anthropic_api_key:
st.warning("Please provide your Anthropic API key.")
elif not input_text:
st.warning("Please enter a comparison question.")
elif not focus_plan_path:
st.warning("Please provide a focus plan.")
else:
display_placeholder = st.empty()
with st.spinner("Processing..."):
try:
compare_with_long_context(
api_key,
anthropic_api_key,
input_text,
focus_plan_path,
selected_summaries,
display_placeholder
)
except Exception as e:
st.error(f"An error occurred: {e}")
|