climate-plan-summary-tool / batch_summary_generation.py
umangchaudhry's picture
Upload 2 files
949c8ba verified
raw
history blame
3.82 kB
import os
from tempfile import NamedTemporaryFile
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
def process_pdf(api_key, pdf_path, questions_path, prompt_path):
os.environ["OPENAI_API_KEY"] = api_key
with open(pdf_path, "rb") as file:
with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
temp_pdf.write(file.read())
temp_pdf_path = temp_pdf.name
loader = PyPDFLoader(temp_pdf_path)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500)
splits = text_splitter.split_documents(docs)
vectorstore = FAISS.from_documents(
documents=splits, embedding=OpenAIEmbeddings(model="text-embedding-3-large")
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 10})
if os.path.exists(prompt_path):
with open(prompt_path, "r") as file:
system_prompt = file.read()
else:
raise FileNotFoundError(f"The specified file was not found: {prompt_path}")
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
llm = ChatOpenAI(model="gpt-4o")
question_answer_chain = create_stuff_documents_chain(llm, prompt, document_variable_name="context")
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
if os.path.exists(questions_path):
with open(questions_path, "r") as file:
questions = [line.strip() for line in file.readlines() if line.strip()]
else:
raise FileNotFoundError(f"The specified file was not found: {questions_path}")
qa_results = []
for question in questions:
result = rag_chain.invoke({"input": question})
answer = result["answer"]
qa_text = f"### Question: {question}\n**Answer:**\n{answer}\n"
qa_results.append(qa_text)
os.remove(temp_pdf_path)
return qa_results
def main():
# Get user input for directory path and API key
directory_path = input("Enter the path to the folder containing the PDF plans: ").strip()
api_key = input("Enter your OpenAI API key: ").strip()
# Paths for prompt and questions files
prompt_file_path = "summary_tool_system_prompt.md"
questions_file_path = "summary_tool_questions.md"
# Create output directory if it doesn't exist
output_directory = "CAPS_Summaries"
os.makedirs(output_directory, exist_ok=True)
# Process each PDF in the directory
for filename in os.listdir(directory_path):
if filename.endswith(".pdf"):
pdf_path = os.path.join(directory_path, filename)
print(f"Processing {filename}...")
try:
results = process_pdf(api_key, pdf_path, questions_file_path, prompt_file_path)
markdown_text = "\n".join(results)
# Save the results to a Markdown file
base_name = os.path.splitext(filename)[0]
output_file_path = os.path.join(output_directory, f"{base_name}_Summary.md")
with open(output_file_path, "w") as output_file:
output_file.write(markdown_text)
print(f"Summary for {filename} saved to {output_file_path}")
except Exception as e:
print(f"An error occurred while processing {filename}: {e}")
if __name__ == "__main__":
main()