File size: 7,509 Bytes
4a78d34
f4ed2d4
b0b7fbb
4a78d34
 
c8da037
4a78d34
c8da037
4a78d34
 
8471f6d
b0b7fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa87c61
b0b7fbb
 
 
 
 
 
 
 
4410a31
f4ed2d4
7564219
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ed2d4
b0b7fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4410a31
b0b7fbb
 
 
11c3aa7
4a78d34
 
b0b7fbb
853a51e
 
4a78d34
d5a5b95
 
8471f6d
d5a5b95
 
 
 
4a78d34
6fa5c81
d5a5b95
 
 
 
 
 
 
 
c8da037
 
 
d5a5b95
66f1c0c
6fa5c81
 
5cff478
4a78d34
66f1c0c
c8da037
b0b7fbb
8ad1a09
c8da037
b0b7fbb
4a78d34
d5a5b95
a2bb1ef
c8da037
 
5cff478
4a78d34
853a51e
b0b7fbb
4a78d34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import gradio as gr
import pandas as pd
import json

from src.about import (
    REPRODUCIBILITY_TEXT,
    INTRODUCTION_TEXT,
    ABOUT_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css, custom_js
# from src.display.utils import (
#     COLS,
#     ST_BENCHMARK_COLS,
#     AGENTIC_BENCHMARK_COLS,
#     EVAL_COLS,
#     AutoEvalColumn,
#     fields,
# )
# from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
# from src.populate import get_evaluation_queue_df, get_leaderboard_df, TASK_NAME_INVERSE_MAP
# from src.submission.submit import add_new_eval
from src.display.formatting import make_clickable_field


# def restart_space():
#     API.restart_space(repo_id=REPO_ID)

# ### Space initialisation
# try:
#     print(EVAL_REQUESTS_PATH)
#     snapshot_download(
#         repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()
# try:
#     print(EVAL_RESULTS_PATH)
#     snapshot_download(
#         repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()


# ST_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, ST_BENCHMARK_COLS)
# AGENTIC_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, AGENTIC_BENCHMARK_COLS)

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

# def bold_max(s):
#     is_max = s == s.max()  # Boolean Series: True for the max value(s)
#     return ['font-weight: bold' if v else '' for v in is_max]

# def init_leaderboard(df, benchmark_type):
#     if df is None or df.empty:
#         raise ValueError("Leaderboard DataFrame is empty or None.")
    
#     non_task_cols = ["Model"]
#     if benchmark_type == "agentic":
#         # Include agent column
#         non_task_cols.append("Agent")
#     elif benchmark_type == "base":
#         # Drop agent column
#         dataframe = dataframe.drop(columns=["Agent"])
#     AutoEvalColumnSubset = [c for c in fields(AutoEvalColumn) if ((c.name in non_task_cols) or (TASK_NAME_INVERSE_MAP.get(c.name, dict()).get("type", "")==benchmark_type))]

    # styler = dataframe.style.apply(bold_max, subset=pd.IndexSlice[:, dataframe.columns[1:]])
    # df.style.set_table_styles([
    #     {'selector': 'th', 'props': [('text-align', 'center')]},
    #     {'selector': 'td', 'props': [('text-align', 'center')]}
    # ])
    # Define a common tooltip text
    # tooltip_text = "This is the common tooltip"

    # # Create a tooltip DataFrame with the same shape as df,
    # # filled with the same tooltip text for each cell.
    # tooltips = pd.DataFrame(tooltip_text, index=df.index, columns=df.columns)

    # # Apply the tooltips to the DataFrame
    # styled_df = df.style.set_tooltips(tooltips)


    # return gr.components.Dataframe(
    #     value=df,
    #     datatype=[c.type for c in AutoEvalColumnSubset],
    #     column_widths=["150px" if c.name != "Model" else "250px" for c in AutoEvalColumnSubset],
    #     wrap=False,
    # )



def build_leaderboard(type):
    with open('data/results.json', 'r') as f:
        results = json.load(f)

    with open('data/tasks.json', 'r') as f:
        tasks = json.load(f)

    # Filter tasks based on type
    filtered_tasks = {k: v for k, v in tasks.items() if v['type'] == type}

    data = []
    for model_name, model_data in results.items():
        # For agentic type, skip models that have all null values for agentic tasks
        if type == "agentic":
            has_agentic_results = any(
                model_data['results'].get(task, {}).get(tasks[task]['metric']) is not None 
                for task in filtered_tasks
            )
            if not has_agentic_results:
                continue

        model_sha = model_data["config"]["model_sha"]
        model_name = model_data["config"]["model_name"]
        row = {
            'Model': make_clickable_field(model_name, model_sha)
        }
        
        for dataset, metrics in model_data['results'].items():
            # Only include metrics for tasks of the specified type
            if dataset in filtered_tasks:
                value = next(iter(metrics.values()))
                log_url = metrics.get('log_url')
                # Use display name from tasks.json instead of raw dataset name
                display_name = filtered_tasks[dataset]['display_name']
                # Round non-null values to 2 decimal places and make clickable if log_url exists
                if value is not None:
                    value = round(value*100, 2)
                    if log_url:
                        value = make_clickable_field(value, log_url)
                row[display_name] = value
        data.append(row)

    results_df = pd.DataFrame(data)
    
    # Round all numeric columns to 2 decimal places
    numeric_cols = results_df.select_dtypes(include=['float64', 'float32']).columns
    results_df[numeric_cols] = results_df[numeric_cols].round(2)

    # Fill null values with "-"
    results_df = results_df.fillna("--")

    if type == "agentic":
        # Include agent column as second column after Model
        results_df.insert(1, 'Agent', '[Basic Agent](https://inspect.ai-safety-institute.org.uk/agents.html#sec-basic-agent)')
    
    return gr.components.Dataframe(
        value=results_df,
        datatype=["html" for _ in results_df.columns],
        column_widths=["250px" if c == "Model" else "150px" for c in results_df.columns],
        wrap=False,
    )


black_logo_path = "src/assets/logo-icon-black.png"
white_logo_path = "src/assets/logo-icon-white.png"

demo = gr.Blocks(
    css=custom_css,
    js=custom_js,
    theme=gr.themes.Default(primary_hue=gr.themes.colors.pink),
    fill_height=True,
    fill_width=True,
)
with demo:
    gr.HTML(f"""
    <div id="page-header">
        <div id="header-container">
            <div id="left-container">
                <img id="black-logo" src="/gradio_api/file={black_logo_path}">
                <img id="white-logo" src="/gradio_api/file={white_logo_path}">
            </div>
            <div id="centre-container">
                <h1 style="margin-bottom: 0.25rem;">{TITLE}</h1>
                <p style="color:#eb088a; margin:0; font-size:1.2rem;">Explore Interactive Results &amp; Traces</p>
            </div>
            <div id="right-container">
            </div>
        </div>
    </div>
    """)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="intro-text", sanitize_html=False)

    with gr.Tabs(elem_classes=["leaderboard-table", "tab-buttons"]) as tabs:
        with gr.TabItem("Base Benchmarks", elem_classes="llm-benchmark-tab-table", id=0):
            build_leaderboard("base")

        with gr.TabItem("Agentic Benchmarks", elem_classes="llm-benchmark-tab-table", id=1):
            build_leaderboard("agentic")

        with gr.TabItem("About", elem_classes="llm-benchmark-tab-table", id=2):
            gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text", sanitize_html=False)

        with gr.TabItem("Reproducibility", elem_classes="llm-benchmark-tab-table", id=3):
            gr.Markdown(REPRODUCIBILITY_TEXT, elem_classes="markdown-text", sanitize_html=False)

assets = [black_logo_path, white_logo_path]
demo.launch()