File size: 12,431 Bytes
99f1917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f25c1
 
 
99f1917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f25c1
99f1917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6ca999
 
99f1917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
from pathlib import Path
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging

from utils import load_embedding_bin, set_timesteps, latents_to_pil
from loss import blue_loss, cosine_loss

torch.manual_seed(11)
logging.set_verbosity_error()

# Set device
torch_device = (
    "cuda"
    if torch.cuda.is_available()
    else "mps"
    if torch.backends.mps.is_available()
    else "cpu"
)
if "mps" == torch_device:
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
# Style embeddings
STYLE_EMBEDDINGS = {
    "illustration-style": "illustration_style.bin",
    "line-art": "line-art.bin",
    "hitokomoru-style": "hitokomoru-style.bin",
    "midjourney-style": "midjourney-style.bin",
    "hanfu-anime-style": "hanfu-anime-style.bin",
    "birb-style": "birb-style.bin",
    "style-of-marc-allante": "Marc Allante.bin",
}
LOSS = {"blue_loss": blue_loss,
        "cosine_loss": cosine_loss}
STYLE_SEEDS = [11, 56, 110, 65, 5, 29, 47]
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained(
    "CompVis/stable-diffusion-v1-4", subfolder="vae"
).to(torch_device)
#
# # Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained(
    "openai/clip-vit-large-patch14").to(torch_device)

# # The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained(
    "CompVis/stable-diffusion-v1-4", subfolder="unet"
).to(torch_device)
#
# # The noise scheduler
scheduler = LMSDiscreteScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    num_train_timesteps=1000,
)

token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)


def build_causal_attention_mask(bsz, seq_len, dtype):
    # lazily create causal attention mask, with full attention between the vision tokens
    # pytorch uses additive attention mask; fill with -inf
    mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
    mask.fill_(torch.tensor(torch.finfo(dtype).min))
    mask.triu_(1)  # zero out the lower diagonal
    mask = mask.unsqueeze(1)  # expand mask
    return mask


def get_output_embeds(input_embeddings):
    # CLIP's text model uses causal mask, so we prepare it here:
    bsz, seq_len = input_embeddings.shape[:2]
    causal_attention_mask = build_causal_attention_mask(
        bsz, seq_len, dtype=input_embeddings.dtype
    )

    # Getting the output embeddings involves calling the model with passing output_hidden_states=True
    # so that it doesn't just return the pooled final predictions:
    encoder_outputs = text_encoder.text_model.encoder(
        inputs_embeds=input_embeddings,
        attention_mask=None,  # We aren't using an attention mask so that can be None
        causal_attention_mask=causal_attention_mask.to(torch_device),
        output_attentions=None,
        output_hidden_states=True,  # We want the output embs not the final output
        return_dict=None,
    )

    # We're interested in the output hidden state only
    output = encoder_outputs[0]

    # There is a final layer norm we need to pass these through
    output = text_encoder.text_model.final_layer_norm(output)

    # And now they're ready!
    return output


# Generating an image with these modified embeddings
def generate_with_embs(text_embeddings, seed, max_length):
    height = 512  # default height of Stable Diffusion
    width = 512  # default width of Stable Diffusion
    num_inference_steps = 30  # Number of denoising steps
    guidance_scale = 7.5  # Scale for classifier-free guidance
    generator = torch.manual_seed(seed)
    batch_size = 1

    # tokenizer
    uncond_input = tokenizer(
        [""] * batch_size,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    # step = " prep_latents "
    latents = torch.randn(
        (batch_size, unet.in_channels, height // 8, width // 8),
        generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), 
                     total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(
                latent_model_input, t, encoder_hidden_states=text_embeddings
            )["sample"]

        # perform guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (
            noise_pred_text - noise_pred_uncond
        )

        # compute the previous noisy sample x_t -> x_t-1
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    return latents_to_pil(latents)[0]


def generate_image_from_embeddings(
        mod_output_embeddings, seed, max_length, 
        loss_selection, additional_prompt):
    height = 512
    width = 512
    num_inference_steps = 50
    guidance_scale = 8
    generator = torch.manual_seed(seed)
    batch_size = 1
    if loss_selection == "blue_loss":
        loss_fn = LOSS["blue_loss"]
        loss_scale = 120
    else:
        loss_fn = LOSS["cosine_loss"](additional_prompt)
        loss_scale = 20

    # Use the modified_output_embeddings directly
    text_embeddings = mod_output_embeddings

    uncond_input = tokenizer(
        [""] * batch_size,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(
            uncond_input.input_ids.to(torch_device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    latents = torch.randn(
        (batch_size, unet.config.in_channels, height // 8, width // 8),
        generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), 
                     total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(
                latent_model_input, t, encoder_hidden_states=text_embeddings
            )["sample"]

        # perform CFG
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (
            noise_pred_text - noise_pred_uncond
        )

        #### ADDITIONAL GUIDANCE ###
        if i % 5 == 0:
            # Requires grad on the latents
            latents = latents.detach().requires_grad_()

            # Get the predicted x0:
            # latents_x0 = latents - sigma * noise_pred
            latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
            scheduler._step_index -= 1
            # Decode to image space
            denoised_images = (
                vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
            )  # range (0, 1)

            # Calculate loss
            loss = loss_fn(denoised_images) * loss_scale

            # Occasionally print it out
            if i % 10 == 0:
                print(i, "loss:", loss.item())

            # Get gradient
            cond_grad = torch.autograd.grad(loss, latents)[0]

            # Modify the latents based on this gradient
            latents = latents.detach() - cond_grad * sigma**2

        # Now step with scheduler
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    return latents_to_pil(latents)[0]


def generate_image_per_style(prompt, style_embed, style_seed, style_embedding_key):
    modified_output_embeddings = None
    gen_out_style_image = None
    max_length = 0

    # Tokenize
    text_input = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    input_ids = text_input.input_ids.to(torch_device)

    # Get token embeddings
    token_embeddings = token_emb_layer(input_ids)

    replacement_token_embedding = style_embed[style_embedding_key]

    # Insert this into the token embeddings
    token_embeddings[
        0, torch.where(input_ids[0] == 6829)[0]
    ] = replacement_token_embedding.to(torch_device)

    # Combine with pos embs
    input_embeddings = token_embeddings + position_embeddings

    #  Feed through to get final output embs
    modified_output_embeddings = get_output_embeds(input_embeddings)

    # And generate an image with this:
    max_length = text_input.input_ids.shape[-1]

    gen_out_style_image = generate_with_embs(
        modified_output_embeddings, style_seed, max_length
    )

    return gen_out_style_image


def generate_image_per_loss(
        prompt, style_embed, style_seed, style_embedding_key,
        loss, additional_prompt
    ):

    prompt = f"{prompt} <{style_embedding_key}>"
    gen_out_loss_image = None

    # Tokenize
    text_input = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    input_ids = text_input.input_ids.to(torch_device)

    # Get token embeddings
    token_embeddings = token_emb_layer(input_ids)

    replacement_token_embedding = style_embed[style_embedding_key].to(torch_device)

    # Insert this into the token embeddings
    token_embeddings[
        0, torch.where(input_ids[0] == 6829)[0]
    ] = replacement_token_embedding

    # Combine with pos embs
    input_embeddings = token_embeddings + position_embeddings
    modified_output_embeddings = get_output_embeds(input_embeddings)

    # max_length = tokenizer.model_max_length

    max_length = text_input.input_ids.shape[-1]
    gen_out_loss_image = generate_image_from_embeddings(
        modified_output_embeddings, style_seed, max_length,
        loss, additional_prompt
    )

    return gen_out_loss_image


def generate_image_per_prompt_style(text_in, style_in, 
                                    loss, additional_prompt):
    gen_style_image = None
    gen_loss_image = None
    STYLE_KEYS = []
    style_key = ""

    if style_in not in STYLE_EMBEDDINGS:
        raise ValueError(
            f"Unknown style: {style_in}. Available styles are: {', '.join(STYLE_EMBEDDINGS.keys())}"
        )

    STYLE_SEEDS = [32, 64, 128, 16, 8, 96]
    STYLE_KEYS = list(STYLE_EMBEDDINGS.keys())
    print(f"prompt: {text_in}")
    print(f"style: {style_in}")

    idx = STYLE_KEYS.index(style_in)
    style_file = STYLE_EMBEDDINGS[style_in]
    print(f"style_file: {style_file}")

    prompt = text_in

    style_seed = STYLE_SEEDS[idx]

    style_key = Path(style_file).stem
    style_key = style_key.replace("_", "-")
    print(style_key, STYLE_KEYS, style_file)

    file_path = os.path.join(os.getcwd(), style_file)
    embedding = load_embedding_bin(file_path)
    style_key = f"<{style_key}>"

    gen_style_image = generate_image_per_style(prompt, embedding, style_seed, style_key)

    gen_loss_image = generate_image_per_loss(prompt, embedding, style_seed, style_key, loss, additional_prompt)

    return [gen_style_image, gen_loss_image]