Generative-art / image_generator.py
venkyyuvy's picture
init commit
99f1917
raw
history blame
12.5 kB
import os
from pathlib import Path
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
from utils import load_embedding_bin, set_timesteps, latents_to_pil
from loss import blue_loss, cosine_loss
from matplotlib import pyplot as plt
from pathlib import Path
torch.manual_seed(11)
logging.set_verbosity_error()
# Set device
torch_device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
if "mps" == torch_device:
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
# Style embeddings
STYLE_EMBEDDINGS = {
"illustration-style": "illustration_style.bin",
"line-art": "line-art.bin",
"hitokomoru-style": "hitokomoru-style.bin",
"midjourney-style": "midjourney-style.bin",
"hanfu-anime-style": "hanfu-anime-style.bin",
"birb-style": "birb-style.bin",
"style-of-marc-allante": "Marc Allante.bin",
}
LOSS = {"blue_loss": blue_loss,
"cosine_loss": cosine_loss}
STYLE_SEEDS = [11, 56, 110, 65, 5, 29, 47]
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="vae"
).to(torch_device)
#
# # Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(
torch_device
)
#
# # The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="unet"
).to(torch_device)
#
# # The noise scheduler
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
# vae = vae
# text_encoder = text_encoder.to(torch_device)
unet = unet
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
def build_causal_attention_mask(bsz, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = build_causal_attention_mask(
bsz, seq_len, dtype=input_embeddings.dtype
)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
# Generating an image with these modified embeddings
def generate_with_embs(text_embeddings, seed, max_length):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 30 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(seed)
batch_size = 1
# tokenizer
uncond_input = tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
# step = " prep_latents "
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps),
total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def generate_image_from_embeddings(
mod_output_embeddings, seed, max_length,
loss_selection, additional_prompt):
height = 512
width = 512
num_inference_steps = 50
guidance_scale = 8
generator = torch.manual_seed(seed)
batch_size = 1
if loss_selection == "blue_loss":
loss_fn = LOSS["blue_loss"]
loss_scale = 120
else:
loss_fn = LOSS["cosine_loss"](additional_prompt)
loss_scale = 20
# Use the modified_output_embeddings directly
text_embeddings = mod_output_embeddings
uncond_input = tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
with torch.no_grad():
uncond_embeddings = text_encoder(
uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.config.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps),
total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
#### ADDITIONAL GUIDANCE ###
if i % 2 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
# latents_x0 = latents - sigma * noise_pred
latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
scheduler._step_index -= 1
# Decode to image space
denoised_images = (
vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
) # range (0, 1)
# Calculate loss
loss = loss_fn(denoised_images) * loss_scale
# Occasionally print it out
if i % 10 == 0:
print(i, "loss:", loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def generate_image_per_style(prompt, style_embed, style_seed, style_embedding_key):
modified_output_embeddings = None
gen_out_style_image = None
max_length = 0
# Tokenize
text_input = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
replacement_token_embedding = style_embed[style_embedding_key]
# Insert this into the token embeddings
token_embeddings[
0, torch.where(input_ids[0] == 6829)[0]
] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
max_length = text_input.input_ids.shape[-1]
gen_out_style_image = generate_with_embs(
modified_output_embeddings, style_seed, max_length
)
return gen_out_style_image
def generate_image_per_loss(
prompt, style_embed, style_seed, style_embedding_key,
loss, additional_prompt
):
gen_out_loss_image = None
# Tokenize
text_input = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
replacement_token_embedding = style_embed[style_embedding_key].to(torch_device)
# Insert this into the token embeddings
token_embeddings[
0, torch.where(input_ids[0] == 6829)[0]
] = replacement_token_embedding
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
modified_output_embeddings = get_output_embeds(input_embeddings)
# max_length = tokenizer.model_max_length
max_length = text_input.input_ids.shape[-1]
gen_out_loss_image = generate_image_from_embeddings(
modified_output_embeddings, style_seed, max_length,
loss, additional_prompt
)
return gen_out_loss_image
def generate_image_per_prompt_style(text_in, style_in,
loss, additional_prompt):
gen_style_image = None
gen_loss_image = None
STYLE_KEYS = []
style_key = ""
if style_in not in STYLE_EMBEDDINGS:
raise ValueError(
f"Unknown style: {style_in}. Available styles are: {', '.join(STYLE_EMBEDDINGS.keys())}"
)
STYLE_SEEDS = [32, 64, 128, 16, 8, 96]
STYLE_KEYS = list(STYLE_EMBEDDINGS.keys())
print(f"prompt: {text_in}")
print(f"style: {style_in}")
idx = STYLE_KEYS.index(style_in)
style_file = STYLE_EMBEDDINGS[style_in]
print(f"style_file: {style_file}")
prompt = text_in
style_seed = STYLE_SEEDS[idx]
style_key = Path(style_file).stem
style_key = style_key.replace("_", "-")
print(style_key, STYLE_KEYS, style_file)
file_path = os.path.join(os.getcwd(), style_file)
embedding = load_embedding_bin(file_path)
style_key = f"<{style_key}>"
gen_style_image = generate_image_per_style(prompt, embedding, style_seed, style_key)
gen_loss_image = generate_image_per_loss(prompt, embedding, style_seed, style_key, loss, additional_prompt)
return [gen_style_image, gen_loss_image]