chat_bot / app.py
venkatcharan's picture
Update app.py
8491e8c verified
raw
history blame
1.8 kB
import os
from langchain_core.prompts import ChatPromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.prompts import MessagesPlaceholder
from langchain.memory import ConversationBufferWindowMemory
from operator import itemgetter
from langchain_core.runnables import RunnableLambda,RunnablePassthrough
import streamlit as st
genai_key = os.getenv("gen_key")
model = ChatGoogleGenerativeAI(temperature=0,model='gemini-1.5-pro',max_output_tokens=150,convert_system_message_to_human=True,google_api_key=genai_key)
prompt=ChatPromptTemplate.from_messages([
("system","you are a good assistant that give information about mentioned topic."),
MessagesPlaceholder(variable_name="history"),
("human","{input}")])
# Initialize memory in session state
if 'memory' not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(k=10, return_messages=True)
# Define the chain
chain = (RunnablePassthrough.assign(history=RunnableLambda(st.session_state.memory.load_memory_variables) | itemgetter("history")) |
prompt | model)
# Streamlit app
st.title("Interactive Chatbot")
# Initialize session state for user input
if 'user_input' not in st.session_state:
st.session_state.user_input = ""
# Input from user
user_input = st.text_area("User: ", st.session_state.user_input, height=100)
if st.button("Submit"):
response = chain.invoke({"input": user_input})
st.write(f"Assistant: {response.content}")
st.session_state.memory.save_context({"input": user_input}, {"output": response.content})
st.session_state.user_input = "" # Clear the input box
# Display chat history
if st.checkbox("Show Chat History"):
chat_history = st.session_state.memory.load_memory_variables({})
st.write(chat_history)