vericudebuget's picture
Create app.py
ff71fa8 verified
import streamlit as st
import os
import py7zr
import requests
from huggingface_hub import HfApi
import torch
from torch.utils.data import DataLoader
import shutil
from pathlib import Path
from typing import Optional
import sys
import io
# Import the denoising code (assuming it's in a file called denoising_model.py)
from denoising_model import DenoisingModel, DenoiseDataset, get_optimal_threads
class StreamCapture:
def __init__(self):
self.logs = []
def write(self, text):
self.logs.append(text)
st.warning(text)
def flush(self):
pass
def download_and_extract_7z(url: str, extract_to: str = '.') -> Optional[str]:
"""Downloads a 7z file and extracts it"""
try:
st.warning(f"Downloading file from {url}...")
response = requests.get(url, stream=True)
response.raise_for_status()
archive_path = os.path.join(extract_to, 'dataset.7z')
with open(archive_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
st.warning("Extracting 7z archive...")
with py7zr.SevenZipFile(archive_path, mode='r') as z:
z.extractall(extract_to)
# Handle directory renaming
output_images_path = os.path.join(extract_to, 'output_images')
if os.path.exists(output_images_path):
# Move and rename directories
source_noisy = os.path.join(output_images_path, 'images_noisy')
source_target = os.path.join(output_images_path, 'images_target')
if os.path.exists('noisy_images'):
shutil.rmtree('noisy_images')
if os.path.exists('target_images'):
shutil.rmtree('target_images')
shutil.move(source_noisy, 'noisy_images')
shutil.move(source_target, 'target_images')
# Clean up
if os.path.exists(output_images_path):
shutil.rmtree(output_images_path)
os.remove(archive_path)
st.warning("Download and extraction completed successfully.")
return None
except Exception as e:
return f"Error: {str(e)}"
def upload_to_huggingface(file_path: str, repo_id: str, path_in_repo: str):
"""Uploads a file to Hugging Face"""
try:
api = HfApi()
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=path_in_repo,
repo_id=repo_id,
repo_type="space"
)
st.warning(f"Successfully uploaded {file_path} to {repo_id}")
except Exception as e:
st.error(f"Error uploading to Hugging Face: {str(e)}")
def train_model_with_upload(epochs, batch_size, learning_rate, save_interval, num_workers, repo_id):
"""Modified training function that uploads checkpoints to Hugging Face"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
st.warning(f"Using device: {device}")
# Create temporary directory for checkpoints
checkpoint_dir = "temp_checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)
try:
dataset = DenoiseDataset('noisy_images', 'target_images')
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True if torch.cuda.is_available() else False
)
model = DenoisingModel().to(device)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(epochs):
st.warning(f"Starting epoch {epoch+1}/{epochs}")
for batch_idx, (noisy_patches, target_patches) in enumerate(dataloader):
noisy_patches = noisy_patches.to(device)
target_patches = target_patches.to(device)
outputs = model(noisy_patches)
loss = criterion(outputs, target_patches)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
st.warning(f"Epoch [{epoch+1}/{epochs}], Batch [{batch_idx+1}], Loss: {loss.item():.6f}")
if (batch_idx + 1) % save_interval == 0:
checkpoint_path = os.path.join(checkpoint_dir, f"checkpoint_epoch{epoch+1}_batch{batch_idx+1}.pth")
torch.save(model.state_dict(), checkpoint_path)
# Upload checkpoint to Hugging Face
upload_to_huggingface(
checkpoint_path,
repo_id,
f"checkpoints/checkpoint_epoch{epoch+1}_batch{batch_idx+1}.pth"
)
# Save and upload final model
final_model_path = os.path.join(checkpoint_dir, "final_model.pth")
torch.save(model.state_dict(), final_model_path)
upload_to_huggingface(final_model_path, repo_id, "model/final_model.pth")
finally:
# Clean up temporary directory
if os.path.exists(checkpoint_dir):
shutil.rmtree(checkpoint_dir)
def main():
st.title("Image Denoising Model Training")
# Redirect stdout to capture print statements
sys.stdout = StreamCapture()
# Input for Hugging Face token
hf_token = st.text_input("Enter your Hugging Face token:", type="password")
if hf_token:
os.environ["HF_TOKEN"] = hf_token
# Input for repository ID
repo_id = st.text_input("Enter your Hugging Face repository ID (username/repo):")
# Download and extract dataset button
if st.button("Download and Extract Dataset"):
url = "https://huggingface.co/spaces/vericudebuget/ok4231/resolve/main/output_images.7z"
error = download_and_extract_7z(url)
if error:
st.error(error)
# Training parameters
col1, col2 = st.columns(2)
with col1:
epochs = st.number_input("Number of epochs", min_value=1, value=10)
batch_size = st.number_input("Batch size", min_value=1, value=4)
learning_rate = st.number_input("Learning rate", min_value=0.0001, value=0.001, format="%.4f")
with col2:
save_interval = st.number_input("Save interval (batches)", min_value=1, value=1000)
num_workers = st.number_input("Number of workers", min_value=1, value=get_optimal_threads())
# Start training button
if st.button("Start Training"):
if not hf_token:
st.error("Please enter your Hugging Face token")
return
if not repo_id:
st.error("Please enter your repository ID")
return
if not os.path.exists("noisy_images") or not os.path.exists("target_images"):
st.error("Dataset not found. Please download and extract it first.")
return
train_model_with_upload(epochs, batch_size, learning_rate, save_interval, num_workers, repo_id)
if __name__ == "__main__":
main()