File size: 993 Bytes
f7dfb0f
9c52842
259984c
f7dfb0f
9c52842
cc1b998
 
f7dfb0f
d995000
259984c
 
9c52842
ae16aa7
9c52842
 
 
ae16aa7
03cf1d4
 
 
 
 
 
 
 
 
 
 
 
abbfcd2
9c52842
03cf1d4
ae16aa7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
import tensorflow as tf
import numpy as np

num_classes = 200
IMG_HEIGHT = 300
IMG_WIDTH = 300

with open("classlabel.txt", 'r') as file:
    CLASS_LABEL = [x.strip() for x in file.readlines()]

def normalize_image(img):
    img = tf.cast(img, tf.float32) / 255.
    img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear')
    return img

def predict_top_classes(img, num_top_classes=5):
     img = img.convert('RGB')
     img_data = _normalize_img(img)
     x = np.array(img_data)
     x = np.expand_dims(x, axis=0)
     temp = model.predict(x)
     
     idx = np.argsort(np.squeeze(temp))[::-1]
     top5_value = np.asarray([temp[0][i] for i in idx[0:5]])
     top5_idx = idx[0:5]
     
     return {CLASS_LABEL[i]:str(v) for i,v in zip(top5_idx,top5_value)}
    
model = tf.keras.models.load_model("Xception.h5")

interface = gr.Interface(predict_top_classes, gr.inputs.Image(type='pil'), outputs='label', args={'num_top_classes': 5})
interface.launch()