nanom's picture
Improvement in the display of the graph axes labels. Generalization of rankSent class. Minor fixes.
a101a53
raw
history blame
3.68 kB
import numpy as np
import pandas as pd
import pytz
from datetime import datetime
from typing import List
class DateLogs:
def __init__(
self,
zone: str = "America/Argentina/Cordoba"
) -> None:
self.time_zone = pytz.timezone(zone)
def full(
self
) -> str:
now = datetime.now(self.time_zone)
return now.strftime("%H:%M:%S %d-%m-%Y")
def day(
self
) -> str:
now = datetime.now(self.time_zone)
return now.strftime("%d-%m-%Y")
def take_two_sides_extreme_sorted(
df: pd.DataFrame,
n_extreme: int,
part_column: str=None,
head_value: str='',
tail_value: str=''
) -> pd.DataFrame:
head_df = df.head(n_extreme)[:]
tail_df = df.tail(n_extreme)[:]
if part_column is not None:
head_df[part_column] = head_value
tail_df[part_column] = tail_value
return (pd.concat([head_df, tail_df])
.drop_duplicates()
.reset_index(drop=True))
def normalize(
v: np.ndarray
) -> np.ndarray:
"""Normalize a 1-D vector."""
if v.ndim != 1:
raise ValueError('v should be 1-D, {}-D was given'.format(
v.ndim))
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
def project_params(
u: np.ndarray,
v: np.ndarray
) -> np.ndarray:
"""Projecting and rejecting the vector v onto direction u with scalar."""
normalize_u = normalize(u)
projection = (v @ normalize_u)
projected_vector = projection * normalize_u
rejected_vector = v - projected_vector
return projection, projected_vector, rejected_vector
def cosine_similarity(
v: np.ndarray,
u: np.ndarray
) -> np.ndarray:
"""Calculate the cosine similarity between two vectors."""
v_norm = np.linalg.norm(v)
u_norm = np.linalg.norm(u)
similarity = v @ u / (v_norm * u_norm)
return similarity
def axes_labels_format(
left: str,
right: str,
sep: str,
word_wrap: int = 4
) -> str:
def sparse(
word: str,
max_len: int
) -> str:
diff = max_len-len(word)
rest = diff if diff > 0 else 0
return word+" "*rest
def gen_block(
list_: List[str],
n_rows:int,
n_cols:int
) -> List[str]:
block = []
block_row = []
for r in range(n_rows):
for c in range(n_cols):
i = r * n_cols + c
w = list_[i] if i <= len(list_) - 1 else ""
block_row.append(w)
if (i+1) % n_cols == 0:
block.append(block_row)
block_row = []
return block
# Transform 'string' to list of string
l_list = [word.strip() for word in left.split(",") if word.strip() != ""]
r_list = [word.strip() for word in right.split(",") if word.strip() != ""]
# Get longest word, and longest_list
longest_list = max(len(l_list), len(r_list))
longest_word = len(max( max(l_list, key=len), max(r_list, key=len)))
# Creation of word blocks for each list
n_rows = (longest_list // word_wrap) if longest_list % word_wrap == 0 else (longest_list // word_wrap) + 1
n_cols = word_wrap
l_block = gen_block(l_list, n_rows, n_cols)
r_block = gen_block(r_list, n_rows, n_cols)
# Transform list of list to sparse string
labels = ""
for i,(l,r) in enumerate(zip(l_block, r_block)):
line = ' '.join([sparse(w, longest_word) for w in l]) + sep + \
' '.join([sparse(w, longest_word) for w in r])
labels += f"← {line} β†’\n" if i==0 else f" {line} \n"
return labels