Spaces:
Runtime error
Runtime error
from gradio.flagging import FlaggingCallback, _get_dataset_features_info | |
from gradio.components import IOComponent | |
from gradio import utils | |
from typing import Any, List, Optional | |
from dotenv import load_dotenv | |
from datetime import datetime | |
import csv, os, pytz | |
# --- Load environments vars --- | |
load_dotenv() | |
# --- Classes declaration --- | |
class DateLogs: | |
def __init__( | |
self, | |
zone: str="America/Argentina/Cordoba" | |
) -> None: | |
self.time_zone = pytz.timezone(zone) | |
def full( | |
self | |
) -> str: | |
now = datetime.now(self.time_zone) | |
return now.strftime("%H:%M:%S %d-%m-%Y") | |
def day( | |
self | |
) -> str: | |
now = datetime.now(self.time_zone) | |
return now.strftime("%d-%m-%Y") | |
class HuggingFaceDatasetSaver(FlaggingCallback): | |
""" | |
A callback that saves each flagged sample (both the input and output data) | |
to a HuggingFace dataset. | |
Example: | |
import gradio as gr | |
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes") | |
def image_classifier(inp): | |
return {'cat': 0.3, 'dog': 0.7} | |
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label", | |
allow_flagging="manual", flagging_callback=hf_writer) | |
Guides: using_flagging | |
""" | |
def __init__( | |
self, | |
dataset_name: str=None, | |
hf_token: str=os.getenv('HF_TOKEN'), | |
organization: Optional[str]=os.getenv('ORG_NAME'), | |
private: bool=True, | |
available_logs: bool=False | |
) -> None: | |
""" | |
Parameters: | |
hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset. | |
dataset_name: The name of the dataset to save the data to, e.g. "image-classifier-1" | |
organization: The organization to save the dataset under. The hf_token must provide write access to this organization. If not provided, saved under the name of the user corresponding to the hf_token. | |
private: Whether the dataset should be private (defaults to False). | |
""" | |
assert(dataset_name is not None), "Error: Parameter 'dataset_name' cannot be empty!." | |
self.hf_token = hf_token | |
self.dataset_name = dataset_name | |
self.organization_name = organization | |
self.dataset_private = private | |
self.datetime = DateLogs() | |
self.available_logs = available_logs | |
if not available_logs: | |
print("Push: logs DISABLED!...") | |
def setup( | |
self, | |
components: List[IOComponent], | |
flagging_dir: str | |
) -> None: | |
""" | |
Params: | |
flagging_dir (str): local directory where the dataset is cloned, | |
updated, and pushed from. | |
""" | |
if self.available_logs: | |
try: | |
import huggingface_hub | |
except (ImportError, ModuleNotFoundError): | |
raise ImportError( | |
"Package `huggingface_hub` not found is needed " | |
"for HuggingFaceDatasetSaver. Try 'pip install huggingface_hub'." | |
) | |
path_to_dataset_repo = huggingface_hub.create_repo( | |
repo_id=os.path.join(self.organization_name, self.dataset_name), | |
token=self.hf_token, | |
private=self.dataset_private, | |
repo_type="dataset", | |
exist_ok=True, | |
) | |
self.path_to_dataset_repo = path_to_dataset_repo | |
self.components = components | |
self.flagging_dir = flagging_dir | |
self.dataset_dir = self.dataset_name | |
self.repo = huggingface_hub.Repository( | |
local_dir=self.dataset_dir, | |
clone_from=path_to_dataset_repo, | |
use_auth_token=self.hf_token, | |
) | |
self.repo.git_pull(lfs=True) | |
# Should filename be user-specified? | |
# log_file_name = self.datetime.day()+"_"+self.flagging_dir+".csv" | |
self.log_file = os.path.join(self.dataset_dir, self.flagging_dir+".csv") | |
def flag( | |
self, | |
flag_data: List[Any], | |
flag_option: Optional[str]=None, | |
flag_index: Optional[int]=None, | |
username: Optional[str]=None, | |
) -> int: | |
if self.available_logs: | |
self.repo.git_pull(lfs=True) | |
is_new = not os.path.exists(self.log_file) | |
with open(self.log_file, "a", newline="", encoding="utf-8") as csvfile: | |
writer = csv.writer(csvfile) | |
# File previews for certain input and output types | |
infos, file_preview_types, headers = _get_dataset_features_info( | |
is_new, self.components | |
) | |
# Generate the headers and dataset_infos | |
if is_new: | |
headers = [ | |
component.label or f"component {idx}" | |
for idx, component in enumerate(self.components) | |
] + [ | |
"flag", | |
"username", | |
"timestamp", | |
] | |
writer.writerow(utils.sanitize_list_for_csv(headers)) | |
# Generate the row corresponding to the flagged sample | |
csv_data = [] | |
for component, sample in zip(self.components, flag_data): | |
save_dir = os.path.join( | |
self.dataset_dir, | |
utils.strip_invalid_filename_characters(component.label), | |
) | |
filepath = component.deserialize(sample, save_dir, None) | |
csv_data.append(filepath) | |
if isinstance(component, tuple(file_preview_types)): | |
csv_data.append( | |
"{}/resolve/main/{}".format(self.path_to_dataset_repo, filepath) | |
) | |
csv_data.append(flag_option if flag_option is not None else "") | |
csv_data.append(username if username is not None else "") | |
csv_data.append(self.datetime.full()) | |
writer.writerow(utils.sanitize_list_for_csv(csv_data)) | |
with open(self.log_file, "r", encoding="utf-8") as csvfile: | |
line_count = len([None for row in csv.reader(csvfile)]) - 1 | |
self.repo.push_to_hub(commit_message="Flagged sample #{}".format(line_count)) | |
else: | |
line_count = 0 | |
print("Logs: Virtual push...") | |
return line_count |