Spaces:
Paused
Paused
File size: 17,436 Bytes
21583b0 577df10 21583b0 1b3bb2f 577df10 21583b0 577df10 21583b0 577df10 95ec856 21583b0 577df10 21583b0 1b3bb2f 21583b0 577df10 21583b0 1b3bb2f 21583b0 010d2b7 21583b0 1b3bb2f 21583b0 1b3bb2f 21583b0 010d2b7 21583b0 010d2b7 21583b0 46574e1 21583b0 46574e1 21583b0 46574e1 21583b0 46574e1 21583b0 d46a5f8 21583b0 46574e1 21583b0 46574e1 21583b0 46574e1 21583b0 46574e1 21583b0 11c3fc1 21583b0 2bad595 21583b0 2bad595 21583b0 2bad595 21583b0 577df10 21583b0 2bad595 21583b0 2bad595 21583b0 1b3bb2f 21583b0 577df10 21583b0 577df10 21583b0 4ab212d a4ac8a1 21583b0 a4ac8a1 21583b0 a4ac8a1 21583b0 a4ac8a1 21583b0 a4ac8a1 21583b0 a4ac8a1 21583b0 a4ac8a1 21583b0 4ab212d a4ac8a1 577df10 21583b0 e4f59bb 4ab212d a4ac8a1 4ab212d 21583b0 a4ac8a1 21583b0 a4ac8a1 21583b0 a4ac8a1 21583b0 1b3bb2f 4ab212d 1b3bb2f a4ac8a1 1b3bb2f 21583b0 2be9aff 21583b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
# from fastapi import FastAPI, File, UploadFile, Form
# from fastapi.responses import StreamingResponse
# from pydantic import BaseModel
# from typing import Optional
# import logging
# import os
# # import boto3
# import json
# # import shlex
# # import subprocess
# # import tempfile
# # import time
# # import base64
# # import gradio as gr
# # import numpy as np
# # import rembg
# # import spaces
# # import torch
# # from PIL import Image
# # from functools import partial
# # import io
# # import datetime
# app = FastAPI()
# # subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
# # from tsr.system import TSR
# # from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
# # if torch.cuda.is_available():
# # device = "cuda:0"
# # else:
# # device = "cpu"
# # # torch.cuda.synchronize()
# # model = TSR.from_pretrained(
# # "stabilityai/TripoSR",
# # config_name="config.yaml",
# # weight_name="model.ckpt",
# # )
# # model.renderer.set_chunk_size(124218)
# # model.to(device)
# # rembg_session = rembg.new_session()
# # ACCESS = os.getenv("ACCESS")
# # SECRET = os.getenv("SECRET")
# # bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
# # bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
# # def upload_file_to_s3(file_path, bucket_name, object_name=None):
# # s3_client = boto3.client('s3',aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
# # if object_name is None:
# # object_name = file_path
# # try:
# # s3_client.upload_file(file_path, bucket_name, object_name)
# # except FileNotFoundError:
# # print(f"The file {file_path} was not found.")
# # return False
# # except NoCredentialsError:
# # print("Credentials not available.")
# # return False
# # except PartialCredentialsError:
# # print("Incomplete credentials provided.")
# # return False
# # except Exception as e:
# # print(f"An error occurred: {e}")
# # return False
# # print(f"File {file_path} uploaded successfully to {bucket_name}/{object_name}.")
# # return True
# # def gen_pos_prompt(text):
# # instruction = f'''Your task is to create a positive prompt for image generation.
# # Objective: Generate images that prioritize structural integrity and accurate shapes. The focus should be on the correct form and basic contours of objects, with minimal concern for colors.
# # Guidelines:
# # Complex Objects (e.g., animals, vehicles, Machines, Fictional Characters, Fantasy and Mythical Creatures, Historical or Cultural Artifacts, Humanoid Figures,Buildings and Architecture): For these, the image should resemble a toy object, emphasizing the correct shape and structure while minimizing details and color complexity.
# # Example Input: A sports bike
# # Example Positive Prompt: Simple sports bike with accurate shape and structure, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, toy-like appearance, low contrast.
# # Example Input: A lion
# # Example Positive Prompt: Toy-like depiction of a lion with a focus on structural accuracy, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
# # Input: The Spiderman with Wolverine Claws
# # Positive Prompt: Toy-like depiction of Spiderman with Wolverine claws, emphasizing structural accuracy with minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
# # Simple Objects (e.g., a tennis ball): For these, the prompt should specify a realistic depiction, focusing on the accurate shape and structure.
# # Example Input: A tennis ball
# # Example Positive Prompt: photorealistic, uhd, high resolution, high quality, highly detailed; A tennis ball
# # Prompt Structure:
# # Subject: Clearly describe the object and its essential shape and structure.
# # Medium: Specify the art style (e.g., digital painting, concept art).
# # Style: Include relevant style terms (e.g., simplified, toy-like for complex objects; realistic for simple objects).
# # Resolution: Mention resolution if necessary (e.g., basic resolution).
# # Lighting: Indicate the type of lighting (e.g., soft lighting).
# # Color: Use neutral or muted colors with minimal emphasis on color details.
# # Additional Details: Keep additional details minimal.
# # ### MAXIMUM OUTPUT LENGTH SHOULD BE UNDER 30 WORDS ###
# # Input: {text}
# # Positive Prompt:
# # '''
# # body = json.dumps({'inputText': instruction,
# # 'textGenerationConfig': {'temperature': 0, 'topP': 0.01, 'maxTokenCount':1024}})
# # response = bedrock_runtime.invoke_model(body=body, modelId='amazon.titan-text-express-v1')
# # pos_prompt = json.loads(response.get('body').read())['results'][0]['outputText']
# # return pos_prompt
# # def generate_image_from_text(pos_prompt, seed):
# # new_prompt = gen_pos_prompt(pos_prompt)
# # # print(new_prompt)
# # # neg_prompt = '''Detailed, complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, realistic proportions, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
# # neg_prompt = '''Out of frame, blurry, ugly, cropped, reflections, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
# # # neg_prompt = '''Complex patterns, realistic lighting, high contrast, reflections, fuzzy, photographic, vibrant, detailed, shadows, disfigured, duplicate.'''
# # parameters = {
# # 'taskType': 'TEXT_IMAGE',
# # 'textToImageParams': {'text': new_prompt,
# # 'negativeText': neg_prompt},
# # 'imageGenerationConfig': {"cfgScale":8,
# # "seed":int(seed),
# # "width":1024,
# # "height":1024,
# # "numberOfImages":1
# # }
# # }
# # request_body = json.dumps(parameters)
# # response = bedrock_runtime.invoke_model(body=request_body, modelId='amazon.titan-image-generator-v2:0')
# # response_body = json.loads(response.get('body').read())
# # base64_image_data = base64.b64decode(response_body['images'][0])
# # return Image.open(io.BytesIO(base64_image_data))
# # def check_input_image(input_image):
# # if input_image is None:
# # raise gr.Error("No image uploaded!")
# # def preprocess(input_image, do_remove_background, foreground_ratio):
# # def fill_background(image):
# # torch.cuda.synchronize() # Ensure previous CUDA operations are complete
# # image = np.array(image).astype(np.float32) / 255.0
# # image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
# # image = Image.fromarray((image * 255.0).astype(np.uint8))
# # return image
# # if do_remove_background:
# # torch.cuda.synchronize()
# # image = input_image.convert("RGB")
# # image = remove_background(image, rembg_session)
# # image = resize_foreground(image, foreground_ratio)
# # image = fill_background(image)
# # torch.cuda.synchronize()
# # else:
# # image = input_image
# # if image.mode == "RGBA":
# # image = fill_background(image)
# # torch.cuda.synchronize() # Wait for all CUDA operations to complete
# # torch.cuda.empty_cache()
# # return image
# # # @spaces.GPU
# # def generate(image, mc_resolution, formats=["obj", "glb"]):
# # torch.cuda.synchronize()
# # scene_codes = model(image, device=device)
# # torch.cuda.synchronize()
# # mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
# # torch.cuda.synchronize()
# # mesh = to_gradio_3d_orientation(mesh)
# # torch.cuda.synchronize()
# # mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
# # torch.cuda.synchronize()
# # mesh.export(mesh_path_glb.name)
# # torch.cuda.synchronize()
# # mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
# # torch.cuda.synchronize()
# # mesh.apply_scale([-1, 1, 1])
# # mesh.export(mesh_path_obj.name)
# # torch.cuda.synchronize()
# # torch.cuda.empty_cache()
# # return mesh_path_obj.name, mesh_path_glb.name
# # def run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution):
# # image_pil = generate_image_from_text(text_prompt, seed)
# # preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
# # mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution, ["obj", "glb"])
# # return preprocessed, mesh_name_obj, mesh_name_glb
# # from gradio_client import Client
# # import requests
# # import json
# # client = Client("vibs08/flash-sd3-new",hf_token=os.getenv("token"))
# # url = 'https://vibs08-image-3d-fastapi.hf.space/process_image/'
# # def text2img(promptt):
# # result = client.predict(
# # prompt=promptt,
# # seed=0,
# # randomize_seed=False,
# # guidance_scale=1,
# # num_inference_steps=4,
# # negative_prompt="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW, bad text",
# # api_name="/infer"
# # )
# # return result
# # def three_d(prompt,seed,fr,mc,auth,text=None):
# # file_path = text2img(prompt)
# # payload = {
# # 'seed': seed,
# # 'enhance_image': False,
# # 'do_remove_background': True,
# # 'foreground_ratio': fr,
# # 'mc_resolution': mc,
# # 'auth': auth,
# # 'text_prompt': text
# # }
# # files = {
# # 'file': (file_path, open(file_path, 'rb'), 'image/png')
# # }
# # headers = {
# # 'accept': 'application/json'
# # }
# # response = requests.post(url, headers=headers, files=files, data=payload)
# # return response.json()
# # @app.post("/process_text/")
# # async def process_image(
# # text_prompt: str = Form(...),
# # seed: int = Form(...),
# # foreground_ratio: float = Form(...),
# # mc_resolution: int = Form(...),
# # auth: str = Form(...)
# # ):
# # if auth == os.getenv("AUTHORIZE"):
# # return three_d(text_prompt, seed, foreground_ratio, mc_resolution, auth)
# # # else:
# # # return {"ERROR": "Too Many Requests!"}
# # # preprocessed, mesh_name_obj, mesh_name_glb = run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution)
# # # # preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
# # # # mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution)
# # # timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
# # # object_name = f'object_{timestamp}_1.obj'
# # # object_name_2 = f'object_{timestamp}_2.glb'
# # # object_name_3 = f"object_{timestamp}.png"
# # # preprocessed_image_tempfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
# # # preprocessed.save(preprocessed_image_tempfile.name)
# # # upload_file_to_s3(preprocessed_image_tempfile.name, 'framebucket3d', object_name_3)
# # # if upload_file_to_s3(mesh_name_obj, 'framebucket3d',object_name) and upload_file_to_s3(mesh_name_glb, 'framebucket3d',object_name_2):
# # # return {
# # # "img_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_3}",
# # # "obj_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}",
# # # "glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}"
# # # }
# # # else:
# # # return {"Internal Server Error": False}
# # else:
# # return {"Authentication":"Failed"}
# # if __name__ == "__main__":
# # import uvicorn
# # uvicorn.run(app, host="0.0.0.0", port=7860)
# from gradio_client import Client
# import requests
# import os
# # Initialize Gradio client with Hugging Face token
# client = Client("vibs08/flash-sd3-new", hf_token=os.getenv("token"))
# # URL for processing image via FastAPI
# url = 'https://vibs08-image-3d-fastapi.hf.space/process_image/'
# def text2img(promptt):
# # Use the Gradio client to generate an image from text
# result = client.predict(
# prompt=promptt, # Adjust the argument name based on the actual method signature
# seed=0,
# randomize_seed=False,
# guidance_scale=1,
# num_inference_steps=4,
# negative_prompt="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW, bad text",
# api_name="/infer"
# )
# # Assuming result is a file path or image data
# return result
# def three_d(promptt, seed, fr, mc, auth, text=None):
# file_path = text2img(promptt) # Get the file path of the generated image
# payload = {
# 'seed': seed,
# 'enhance_image': False,
# 'do_remove_background': True,
# 'foreground_ratio': fr,
# 'mc_resolution': mc,
# 'auth': auth,
# 'text_prompt': text
# }
# with open(file_path, 'rb') as image_file:
# files = {
# 'file': (file_path, image_file, 'image/png')
# }
# headers = {
# 'accept': 'application/json'
# }
# response = requests.post(url, headers=headers, files=files, data=payload)
# return response.json()
# from fastapi import FastAPI, Form
# app = FastAPI()
# @app.post("/process_text/")
# async def process_text(
# text_prompt: str = Form(...),
# seed: int = Form(...),
# foreground_ratio: float = Form(...),
# mc_resolution: int = Form(...),
# auth: str = Form(...)
# ):
# if auth == os.getenv("AUTHORIZE"):
# return three_d(text_prompt, seed, foreground_ratio, mc_resolution, auth)
# else:
# return {"Authentication": "Failed"}
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=7860)
import gradio as gr
# from gradio_client import Client
import requests
import os
# # Initialize Gradio client with Hugging Face token
client = Client("vibs08/flash-sd3-new", hf_token=os.getenv("token"))
# URL for processing image via FastAPI
url = 'https://vibs08-image-3d-fastapi.hf.space/process_image/'
def text2img(prompt):
# Use the Gradio client to generate an image from text
result = client.predict(
prompt=prompt,
seed=0,
randomize_seed=False,
guidance_scale=1,
num_inference_steps=4,
negative_prompt="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW, bad text",
api_name="/infer"
)
# Assuming result is a file path or image data
return result
def three_d(prompt, seed, fr, mc, auth, text=None):
file_path = text2img(prompt) # Get the file path of the generated image
payload = {
'seed': seed,
'enhance_image': False,
'do_remove_background': True,
'foreground_ratio': fr,
'mc_resolution': mc,
'auth': auth,
'text_prompt': text
}
with open(file_path, 'rb') as image_file:
files = {
'file': (file_path, image_file, 'image/png')
}
headers = {
'accept': 'application/json'
}
response = requests.post(url, headers=headers, files=files, data=payload)
return response.json()
def process_input(text_prompt, seed, foreground_ratio, mc_resolution, auth):
if auth == os.getenv("AUTHORIZE"):
return three_d(text_prompt, seed, foreground_ratio, mc_resolution, auth)
else:
return {"Authentication": "Failed"}
# Create Gradio Interface
interface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(label="Text Prompt"),
gr.Number(label="Seed"),
gr.Number(label="Foreground Ratio"),
gr.Number(label="MC Resolution"),
gr.Textbox(label="Authorization Token", type="password")
],
outputs="json",
title="3D Image Generator",
description="Generate 3D images from text prompts"
)
# Launch the Gradio Interface
if __name__ == "__main__":
interface.launch()
|