File size: 6,841 Bytes
219dcf9
 
 
 
 
31ae891
 
 
219dcf9
 
 
 
 
31ae891
219dcf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7494f3
 
219dcf9
 
31ae891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219dcf9
 
31ae891
 
 
 
 
 
219dcf9
 
 
 
f7494f3
 
31ae891
 
 
 
219dcf9
 
 
 
31ae891
 
 
219dcf9
 
31ae891
 
219dcf9
 
31ae891
 
219dcf9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, BitsAndBytesConfig, AutoTokenizer
from IndicTransToolkit import IndicProcessor
import speech_recognition as sr
from pydub import AudioSegment
import os
from sentence_transformers import SentenceTransformer, util  #Multilingual Similarity

# Constants
BATCH_SIZE = 4
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
quantization = None
MAX_AUDIO_DURATION = 600  # 10 minutes in seconds

# ---- IndicTrans2 Model Initialization ----
def initialize_model_and_tokenizer(ckpt_dir, quantization):
    if quantization == "4-bit":
        qconfig = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
        )
    elif quantization == "8-bit":
        qconfig = BitsAndBytesConfig(
            load_in_8bit=True,
            bnb_8bit_use_double_quant=True,
            bnb_8bit_compute_dtype=torch.bfloat16,
        )
    else:
        qconfig = None

    tokenizer = AutoTokenizer.from_pretrained(ckpt_dir, trust_remote_code=True)
    model = AutoModelForSeq2SeqLM.from_pretrained(
        ckpt_dir,
        trust_remote_code=True,
        low_cpu_mem_usage=True,
        quantization_config=qconfig,
    )

    if qconfig is None:
        model = model.to(DEVICE)
        if DEVICE == "cuda":
            model.half()

    model.eval()
    return tokenizer, model

def batch_translate(input_sentences, src_lang, tgt_lang, model, tokenizer, ip):
    translations = []
    for i in range(0, len(input_sentences), BATCH_SIZE):
        batch = input_sentences[i : i + BATCH_SIZE]
        batch = ip.preprocess_batch(batch, src_lang=src_lang, tgt_lang=tgt_lang)
        inputs = tokenizer(
            batch,
            truncation=True,
            padding="longest",
            return_tensors="pt",
            return_attention_mask=True,
        ).to(DEVICE)

        with torch.no_grad():
            generated_tokens = model.generate(
                **inputs,
                use_cache=True,
                min_length=0,
                max_length=256,
                num_beams=5,
                num_return_sequences=1,
            )

        with tokenizer.as_target_tokenizer():
            generated_tokens = tokenizer.batch_decode(
                generated_tokens.detach().cpu().tolist(),
                skip_special_tokens=True,
                clean_up_tokenization_spaces=True,
            )

        translations += ip.postprocess_batch(generated_tokens, lang=tgt_lang)
        del inputs
        torch.cuda.empty_cache()

    return translations

# Initialize IndicTrans2
indic_en_ckpt_dir = "ai4bharat/indictrans2-indic-en-1B"
indic_en_tokenizer, indic_en_model = initialize_model_and_tokenizer(indic_en_ckpt_dir, quantization)
ip = IndicProcessor(inference=True)

# Load LaBSE for Multilingual Similarity
similarity_model = SentenceTransformer("sentence-transformers/LaBSE")

# ---- Audio Processing Function ----
def convert_audio_to_wav(file_path):
    """ Convert audio to WAV format for compatibility with SpeechRecognition """
    audio = AudioSegment.from_file(file_path)
    wav_path = file_path.replace(file_path.split(".")[-1], "wav")
    audio.export(wav_path, format="wav")
    return wav_path

def transcribe_audio_in_chunks(audio_path, chunk_duration=30):
    """Transcribe long audio files in chunks of `chunk_duration` seconds."""
    recognizer = sr.Recognizer()
    audio = AudioSegment.from_wav(audio_path)
    
    # Limit audio duration to MAX_AUDIO_DURATION
    if len(audio) > MAX_AUDIO_DURATION * 1000:
        audio = audio[:MAX_AUDIO_DURATION * 1000]

    full_text = []
    for i in range(0, len(audio), chunk_duration * 1000):
        chunk = audio[i : i + chunk_duration * 1000]
        chunk_path = f"temp_chunk.wav"
        chunk.export(chunk_path, format="wav")

        with sr.AudioFile(chunk_path) as source:
            audio_data = recognizer.record(source)
            try:
                text = recognizer.recognize_google(audio_data, language="ml-IN")
                full_text.append(text)
            except sr.UnknownValueError:
                full_text.append("[Unrecognized Audio]")
            except sr.RequestError as e:
                full_text.append(f"[Speech Error: {e}]")

    return " ".join(full_text)

# Multilingual Semantic Similarity Function (Auto-Reference)
def compute_similarity(malayalam_text, english_translation):
    """Compares the original Malayalam transcription with back-translated Malayalam text for similarity."""
    
    if not malayalam_text.strip():
        print("⚠️ Malayalam transcription is empty!")
        return "N/A"

    if not english_translation.strip():
        print("⚠️ English translation is empty!")
        return "N/A"

    try:
        # Translate English back to Malayalam for comparison
        back_translated = batch_translate([english_translation], "eng_Latn", "mal_Mlym", indic_en_model, indic_en_tokenizer, ip)[0]

        # Encode Malayalam transcription & Back-Translated Malayalam
        embeddings = similarity_model.encode([malayalam_text, back_translated])
        
        # Compute cosine similarity
        similarity_score = util.cos_sim(embeddings[0], embeddings[1]).item()
        return round(similarity_score * 100, 2)  # Convert to percentage
    except Exception as e:
        print(f"Error in similarity computation: {e}")
        return "N/A"

# ---- Gradio Function ----
def transcribe_and_translate(audio):
    # Convert to WAV if necessary
    if not audio.endswith(".wav"):
        audio = convert_audio_to_wav(audio)
    
    # Transcribe audio in chunks
    malayalam_text = transcribe_audio_in_chunks(audio)
    
    # Translation
    en_sents = [malayalam_text]
    src_lang, tgt_lang = "mal_Mlym", "eng_Latn"
    translations = batch_translate(en_sents, src_lang, tgt_lang, indic_en_model, indic_en_tokenizer, ip)

    # Compute Multilingual Semantic Similarity (Malayalam → English → Malayalam)
    similarity_score = compute_similarity(malayalam_text, translations[0])

    return malayalam_text, translations[0], f"{similarity_score}%"  # Similarity as %

# ---- Gradio Interface ----
iface = gr.Interface(
    fn=transcribe_and_translate,
    inputs=[
        gr.Audio(sources=["microphone", "upload"], type="filepath"),  # Only audio input
    ],
    outputs=[
        gr.Textbox(label="Malayalam Transcription"),
        gr.Textbox(label="English Translation"),
        gr.Textbox(label="Semantic Similarity (%)"),  # Automatically computed
    ],
    title="Malayalam Speech Recognition & Translation",
    description="Speak in Malayalam → Transcribe using Speech Recognition → Translate to English & Measure Accuracy.",
    allow_flagging="never"
)

iface.launch(debug=True, share=True)