Spaces:
Running
Running
# Deployment on Azure Machine Learning | |
## Pre-requisites | |
``` | |
cd inference/triton_server | |
``` | |
Set the environment for AML: | |
``` | |
export RESOURCE_GROUP=Dhruva-prod | |
export WORKSPACE_NAME=dhruva--central-india | |
export DOCKER_REGISTRY=dhruvaprod | |
``` | |
Also remember to edit the `yml` files accordingly. | |
## Registering the model | |
``` | |
az ml model create --file azure_ml/model.yml --resource-group $RESOURCE_GROUP --workspace-name $WORKSPACE_NAME | |
``` | |
## Pushing the docker image to Container Registry | |
``` | |
az acr login --name $DOCKER_REGISTRY | |
docker tag indictrans2_triton $DOCKER_REGISTRY.azurecr.io/nmt/triton-indictrans-v2:latest | |
docker push $DOCKER_REGISTRY.azurecr.io/nmt/triton-indictrans-v2:latest | |
``` | |
## Creating the execution environment | |
``` | |
az ml environment create -f azure_ml/environment.yml -g $RESOURCE_GROUP -w $WORKSPACE_NAME | |
``` | |
## Publishing the endpoint for online inference | |
``` | |
az ml online-endpoint create -f azure_ml/endpoint.yml -g $RESOURCE_GROUP -w $WORKSPACE_NAME | |
``` | |
Now from the Azure Portal, open the Container Registry, and grant ACR_PULL permission for the above endpoint, so that it is allowed to download the docker image. | |
## Attaching a deployment | |
``` | |
az ml online-deployment create -f azure_ml/deployment.yml --all-traffic -g $RESOURCE_GROUP -w $WORKSPACE_NAME | |
``` | |
## Testing if inference works | |
1. From Azure ML Studio, go to the "Consume" tab, and get the endpoint domain (without `https://` or trailing `/`) and an authentication key. | |
2. In `client.py`, enable `ENABLE_SSL = True`, and then set the `ENDPOINT_URL` variable as well as `Authorization` value inside `HTTP_HEADERS`. | |
3. Run `python3 client.py` | |