Spaces:
Running
Running
Update Leaderboard
#1
by
HugSib
- opened
- .gitignore +3 -0
- app.py +75 -171
- app/__init__.py +1 -0
- app/utils.py +31 -0
- data/__init__.py +1 -0
- data/dataset_handler.py +64 -0
- data/model_handler.py +94 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.venv
|
2 |
+
*.json
|
3 |
+
*.pyc
|
app.py
CHANGED
@@ -1,182 +1,86 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
import pandas as pd
|
6 |
-
from huggingface_hub import HfApi, hf_hub_download
|
7 |
-
from huggingface_hub.repocard import metadata_load
|
8 |
-
|
9 |
-
|
10 |
-
def make_clickable_model(model_name, link=None):
|
11 |
-
if link is None:
|
12 |
-
link = "https://huggingface.co/" + model_name
|
13 |
-
# Remove user from model name
|
14 |
-
# return (
|
15 |
-
# f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
16 |
-
# )
|
17 |
-
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name}</a>'
|
18 |
-
|
19 |
-
|
20 |
-
def add_rank(df):
|
21 |
-
cols_to_rank = [
|
22 |
-
col
|
23 |
-
for col in df.columns
|
24 |
-
if col
|
25 |
-
not in [
|
26 |
-
"Model",
|
27 |
-
"Model Size (Million Parameters)",
|
28 |
-
"Memory Usage (GB, fp32)",
|
29 |
-
"Embedding Dimensions",
|
30 |
-
"Max Tokens",
|
31 |
-
]
|
32 |
-
]
|
33 |
-
if len(cols_to_rank) == 1:
|
34 |
-
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
35 |
-
else:
|
36 |
-
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
37 |
-
df.sort_values("Average", ascending=False, inplace=True)
|
38 |
-
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
39 |
-
df = df.round(2)
|
40 |
-
# Fill NaN after averaging
|
41 |
-
df.fillna("", inplace=True)
|
42 |
-
return df
|
43 |
-
|
44 |
-
|
45 |
-
def get_vidore_data():
|
46 |
-
api = HfApi()
|
47 |
-
|
48 |
-
# local cache path
|
49 |
-
model_infos_path = "model_infos.json"
|
50 |
-
MODEL_INFOS = {}
|
51 |
-
if os.path.exists(model_infos_path):
|
52 |
-
with open(model_infos_path) as f:
|
53 |
-
MODEL_INFOS = json.load(f)
|
54 |
-
|
55 |
-
models = api.list_models(filter="vidore")
|
56 |
-
|
57 |
-
for model in models:
|
58 |
-
if model.modelId not in MODEL_INFOS:
|
59 |
-
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
60 |
-
meta = metadata_load(readme_path)
|
61 |
-
try:
|
62 |
-
result_path = hf_hub_download(model.modelId, filename="results.json")
|
63 |
-
|
64 |
-
with open(result_path) as f:
|
65 |
-
results = json.load(f)
|
66 |
-
# keep only ndcg_at_5
|
67 |
-
for dataset in results:
|
68 |
-
results[dataset] = {key: value for key, value in results[dataset].items() if "ndcg_at_5" in key}
|
69 |
-
|
70 |
-
MODEL_INFOS[model.modelId] = {"metadata": meta, "results": results}
|
71 |
-
except:
|
72 |
-
continue
|
73 |
-
|
74 |
-
model_res = {}
|
75 |
-
df = None
|
76 |
-
if len(MODEL_INFOS) > 0:
|
77 |
-
for model in MODEL_INFOS.keys():
|
78 |
-
res = MODEL_INFOS[model]["results"]
|
79 |
-
dataset_res = {}
|
80 |
-
for dataset in res.keys():
|
81 |
-
if "validation_set" == dataset:
|
82 |
-
continue
|
83 |
-
dataset_res[dataset] = res[dataset]["ndcg_at_5"]
|
84 |
-
model_res[model] = dataset_res
|
85 |
-
|
86 |
-
df = pd.DataFrame(model_res).T
|
87 |
-
|
88 |
-
# add average
|
89 |
-
# df["average"] = df.mean(axis=1)
|
90 |
-
# df = df.sort_values(by="average", ascending=False)
|
91 |
-
# # round to 2 decimals
|
92 |
-
# df = df.round(2)
|
93 |
-
return df
|
94 |
-
|
95 |
-
|
96 |
-
def add_rank_and_format(df):
|
97 |
-
df = df.reset_index()
|
98 |
-
df = df.rename(columns={"index": "Model"})
|
99 |
-
df = add_rank(df)
|
100 |
-
df["Model"] = df["Model"].apply(make_clickable_model)
|
101 |
-
return df
|
102 |
-
|
103 |
-
|
104 |
-
# 1. Force headers to wrap
|
105 |
-
# 2. Force model column (maximum) width
|
106 |
-
# 3. Prevent model column from overflowing, scroll instead
|
107 |
-
# 4. Prevent checkbox groups from taking up too much space
|
108 |
-
|
109 |
-
css = """
|
110 |
-
table > thead {
|
111 |
-
white-space: normal
|
112 |
-
}
|
113 |
-
|
114 |
-
table {
|
115 |
-
--cell-width-1: 250px
|
116 |
-
}
|
117 |
-
|
118 |
-
table > tbody > tr > td:nth-child(2) > div {
|
119 |
-
overflow-x: auto
|
120 |
-
}
|
121 |
-
|
122 |
-
.filter-checkbox-group {
|
123 |
-
max-width: max-content;
|
124 |
-
}
|
125 |
-
"""
|
126 |
-
|
127 |
-
|
128 |
-
def get_refresh_function():
|
129 |
-
def _refresh():
|
130 |
-
data_task_category = get_vidore_data()
|
131 |
-
return add_rank_and_format(data_task_category)
|
132 |
-
|
133 |
-
return _refresh
|
134 |
-
|
135 |
-
|
136 |
-
def get_refresh_overall_function():
|
137 |
-
return lambda: get_refresh_function()
|
138 |
-
|
139 |
|
140 |
-
|
141 |
-
data = add_rank_and_format(data)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
|
150 |
-
|
151 |
-
gr.Markdown(
|
152 |
-
f"""
|
153 |
-
Visual Document Retrieval Benchmark leaderboard. To submit, refer to the <a href="https://github.com/tonywu71/vidore-benchmark/" target="_blank" style="text-decoration: underline">ViDoRe GitHub repository</a>. Refer to the [ColPali paper](https://arxiv.org/abs/XXXX.XXXXX) for details on metrics, tasks and models.
|
154 |
-
"""
|
155 |
-
)
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
-
|
170 |
-
|
171 |
-
|
172 |
-
Please consider citing:
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
"""
|
178 |
-
)
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
if __name__ == "__main__":
|
182 |
block.queue(max_size=10).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from data.model_handler import ModelHandler
|
2 |
+
from app.utils import add_rank_and_format, get_refresh_function
|
|
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
METRICS = ["ndcg_at_5", "recall_at_1", "recall_at_5", "mrr_at_5"]
|
|
|
6 |
|
7 |
+
def main():
|
8 |
+
model_handler = ModelHandler()
|
9 |
+
initial_metric = "ndcg_at_5"
|
10 |
+
|
11 |
+
data = model_handler.get_vidore_data(initial_metric)
|
12 |
+
data = add_rank_and_format(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
NUM_DATASETS = len(data.columns) - 3
|
15 |
+
NUM_SCORES = len(data) * NUM_DATASETS
|
16 |
+
NUM_MODELS = len(data)
|
17 |
|
18 |
+
css = """
|
19 |
+
table > thead {
|
20 |
+
white-space: normal
|
21 |
+
}
|
22 |
|
23 |
+
table {
|
24 |
+
--cell-width-1: 250px
|
25 |
+
}
|
26 |
+
|
27 |
+
table > tbody > tr > td:nth-child(2) > div {
|
28 |
+
overflow-x: auto
|
29 |
+
}
|
|
|
30 |
|
31 |
+
.filter-checkbox-group {
|
32 |
+
max-width: max-content;
|
33 |
+
}
|
34 |
"""
|
|
|
35 |
|
36 |
+
with gr.Blocks(css=css) as block:
|
37 |
+
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 📚🔍")
|
38 |
+
gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
|
39 |
+
|
40 |
+
gr.Markdown(
|
41 |
+
"""
|
42 |
+
Visual Document Retrieval Benchmark leaderboard. To submit, refer to the <a href="https://github.com/tonywu71/vidore-benchmark/" target="_blank" style="text-decoration: underline">ViDoRe GitHub repository</a>. Refer to the [ColPali paper](https://arxiv.org/abs/XXXX.XXXXX) for details on metrics, tasks and models.
|
43 |
+
"""
|
44 |
+
)
|
45 |
+
#all_columns = list(data.columns)
|
46 |
+
#default_columns = all_columns
|
47 |
+
|
48 |
+
with gr.Row():
|
49 |
+
metric_dropdown = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
50 |
+
#column_checkboxes = gr.CheckboxGroup(choices=all_columns, value=default_columns, label="Select Columns to Display")
|
51 |
+
|
52 |
+
with gr.Row():
|
53 |
+
datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
|
54 |
+
dataframe = gr.Dataframe(data, datatype=datatype, type="pandas")
|
55 |
+
|
56 |
+
with gr.Row():
|
57 |
+
refresh_button = gr.Button("Refresh")
|
58 |
+
refresh_button.click(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe, concurrency_limit=20)
|
59 |
+
|
60 |
+
|
61 |
+
# Automatically refresh the dataframe when the dropdown value changes
|
62 |
+
metric_dropdown.change(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe)
|
63 |
+
#column_checkboxes.change(get_refresh_function(), inputs=[metric_dropdown, column_checkboxes], outputs=dataframe)
|
64 |
+
|
65 |
+
|
66 |
+
gr.Markdown(
|
67 |
+
f"""
|
68 |
+
- **Total Datasets**: {NUM_DATASETS}
|
69 |
+
- **Total Scores**: {NUM_SCORES}
|
70 |
+
- **Total Models**: {NUM_MODELS}
|
71 |
+
"""
|
72 |
+
+ r"""
|
73 |
+
Please consider citing:
|
74 |
+
|
75 |
+
```bibtex
|
76 |
+
INSERT LATER
|
77 |
+
```
|
78 |
+
"""
|
79 |
+
)
|
80 |
|
|
|
81 |
block.queue(max_size=10).launch(debug=True)
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
main()
|
86 |
+
|
app/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
app/utils.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from data.model_handler import ModelHandler
|
2 |
+
|
3 |
+
def make_clickable_model(model_name, link=None):
|
4 |
+
if link is None:
|
5 |
+
desanitized_model_name = model_name.replace("_", "/")
|
6 |
+
|
7 |
+
if '/captioning' in desanitized_model_name:
|
8 |
+
desanitized_model_name = desanitized_model_name.replace('/captioning', '')
|
9 |
+
if '/ocr' in desanitized_model_name:
|
10 |
+
desanitized_model_name = desanitized_model_name.replace('/ocr', '')
|
11 |
+
|
12 |
+
link = "https://huggingface.co/" + desanitized_model_name
|
13 |
+
|
14 |
+
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name}</a>'
|
15 |
+
|
16 |
+
|
17 |
+
def add_rank_and_format(df):
|
18 |
+
df = df.reset_index()
|
19 |
+
df = df.rename(columns={"index": "Model"})
|
20 |
+
df = ModelHandler.add_rank(df)
|
21 |
+
df["Model"] = df["Model"].apply(make_clickable_model)
|
22 |
+
return df
|
23 |
+
|
24 |
+
def get_refresh_function():
|
25 |
+
def _refresh(metric):
|
26 |
+
model_handler = ModelHandler()
|
27 |
+
data_task_category = model_handler.get_vidore_data(metric)
|
28 |
+
df = add_rank_and_format(data_task_category)
|
29 |
+
return df
|
30 |
+
|
31 |
+
return _refresh
|
data/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
data/dataset_handler.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
from huggingface_hub import get_collection
|
3 |
+
|
4 |
+
|
5 |
+
def get_datasets_nickname() -> Dict:
|
6 |
+
datasets_nickname = {}
|
7 |
+
|
8 |
+
collection = get_collection("vidore/vidore-benchmark-667173f98e70a1c0fa4db00d")
|
9 |
+
collection_items = collection.items
|
10 |
+
|
11 |
+
for item in collection_items:
|
12 |
+
dataset_name = item.item_id
|
13 |
+
|
14 |
+
if 'arxivqa' in dataset_name:
|
15 |
+
datasets_nickname[dataset_name] = 'ArxivQA'
|
16 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ArxivQA'
|
17 |
+
datasets_nickname[dataset_name + '_captioning'] = 'ArxivQA'
|
18 |
+
|
19 |
+
elif 'docvqa' in dataset_name:
|
20 |
+
datasets_nickname[dataset_name] = 'DocVQA'
|
21 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'DocVQA'
|
22 |
+
datasets_nickname[dataset_name + '_captioning'] = 'DocVQA'
|
23 |
+
|
24 |
+
elif 'infovqa' in dataset_name:
|
25 |
+
datasets_nickname[dataset_name] = 'InfoVQA'
|
26 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'InfoVQA'
|
27 |
+
datasets_nickname[dataset_name + '_captioning'] = 'InfoVQA'
|
28 |
+
|
29 |
+
elif 'tabfquad' in dataset_name:
|
30 |
+
datasets_nickname[dataset_name] = 'TabFQuad'
|
31 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TabFQuad'
|
32 |
+
datasets_nickname[dataset_name + '_captioning'] = 'TabFQuad'
|
33 |
+
|
34 |
+
elif 'tatdqa' in dataset_name:
|
35 |
+
datasets_nickname[dataset_name] = 'TATDQA'
|
36 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TATDQA'
|
37 |
+
datasets_nickname[dataset_name + '_captioning'] = 'TATDQA'
|
38 |
+
|
39 |
+
elif 'shiftproject' in dataset_name:
|
40 |
+
datasets_nickname[dataset_name] = 'ShiftProject'
|
41 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ShiftProject'
|
42 |
+
datasets_nickname[dataset_name + '_captioning'] = 'ShiftProject'
|
43 |
+
|
44 |
+
elif 'artificial_intelligence' in dataset_name:
|
45 |
+
datasets_nickname[dataset_name] = 'Artificial Intelligence'
|
46 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Artificial Intelligence'
|
47 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Artificial Intelligence'
|
48 |
+
|
49 |
+
elif 'energy' in dataset_name:
|
50 |
+
datasets_nickname[dataset_name] = 'Energy'
|
51 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Energy'
|
52 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Energy'
|
53 |
+
|
54 |
+
elif 'government_reports' in dataset_name:
|
55 |
+
datasets_nickname[dataset_name] = 'Government Reports'
|
56 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Government Reports'
|
57 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Government Reports'
|
58 |
+
|
59 |
+
elif 'healthcare' in dataset_name:
|
60 |
+
datasets_nickname[dataset_name] = 'Healthcare'
|
61 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Healthcare'
|
62 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Healthcare'
|
63 |
+
|
64 |
+
return datasets_nickname
|
data/model_handler.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from typing import Dict
|
4 |
+
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
5 |
+
import pandas as pd
|
6 |
+
from .dataset_handler import get_datasets_nickname
|
7 |
+
|
8 |
+
class ModelHandler:
|
9 |
+
def __init__(self, model_infos_path="model_infos.json"):
|
10 |
+
self.api = HfApi()
|
11 |
+
self.model_infos_path = model_infos_path
|
12 |
+
self.model_infos = self._load_model_infos()
|
13 |
+
|
14 |
+
def _load_model_infos(self) -> Dict:
|
15 |
+
if os.path.exists(self.model_infos_path):
|
16 |
+
with open(self.model_infos_path) as f:
|
17 |
+
return json.load(f)
|
18 |
+
return {}
|
19 |
+
|
20 |
+
def _save_model_infos(self):
|
21 |
+
with open(self.model_infos_path, "w") as f:
|
22 |
+
json.dump(self.model_infos, f)
|
23 |
+
|
24 |
+
def get_vidore_data(self, metric="ndcg_at_5"):
|
25 |
+
models = self.api.list_models(filter="vidore")
|
26 |
+
repositories = [model.modelId for model in models] # type: ignore
|
27 |
+
|
28 |
+
datasets_nickname = get_datasets_nickname()
|
29 |
+
for repo_id in repositories:
|
30 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith('_metrics.json')]
|
31 |
+
if len(files) == 0:
|
32 |
+
continue
|
33 |
+
else:
|
34 |
+
for file in files:
|
35 |
+
model_name = file.split('_metrics.json')[0]
|
36 |
+
|
37 |
+
if model_name not in self.model_infos:
|
38 |
+
readme_path = hf_hub_download(repo_id, filename="README.md")
|
39 |
+
meta = metadata_load(readme_path)
|
40 |
+
try:
|
41 |
+
result_path = hf_hub_download(repo_id, filename=file)
|
42 |
+
|
43 |
+
with open(result_path) as f:
|
44 |
+
results = json.load(f)
|
45 |
+
|
46 |
+
for dataset in results:
|
47 |
+
results[dataset] = {key: value for key, value in results[dataset].items()}
|
48 |
+
|
49 |
+
self.model_infos[model_name] = {"meta": meta, "results": results}
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error loading {model_name} - {e}")
|
52 |
+
continue
|
53 |
+
|
54 |
+
#self._save_model_infos()
|
55 |
+
|
56 |
+
model_res = {}
|
57 |
+
if len(self.model_infos) > 0:
|
58 |
+
for model in self.model_infos.keys():
|
59 |
+
res = self.model_infos[model]["results"]
|
60 |
+
dataset_res = {}
|
61 |
+
for dataset in res.keys():
|
62 |
+
if "validation_set" == dataset:
|
63 |
+
continue
|
64 |
+
dataset_res[datasets_nickname[dataset]] = res[dataset][metric]
|
65 |
+
model_res[model] = dataset_res
|
66 |
+
|
67 |
+
df = pd.DataFrame(model_res).T
|
68 |
+
return df
|
69 |
+
return pd.DataFrame()
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def add_rank(df):
|
73 |
+
cols_to_rank = [
|
74 |
+
col
|
75 |
+
for col in df.columns
|
76 |
+
if col
|
77 |
+
not in [
|
78 |
+
"Model",
|
79 |
+
"Model Size (Million Parameters)",
|
80 |
+
"Memory Usage (GB, fp32)",
|
81 |
+
"Embedding Dimensions",
|
82 |
+
"Max Tokens",
|
83 |
+
]
|
84 |
+
]
|
85 |
+
if len(cols_to_rank) == 1:
|
86 |
+
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
87 |
+
else:
|
88 |
+
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
89 |
+
df.sort_values("Average", ascending=False, inplace=True)
|
90 |
+
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
91 |
+
df = df.round(2)
|
92 |
+
# Fill NaN after averaging
|
93 |
+
df.fillna("", inplace=True)
|
94 |
+
return df
|