File size: 983 Bytes
c3567b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
# Load the T5 model and tokenizer
model_name = "t5-base"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
def generate_text(input_text):
# Encode input text and generate output ids
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_ids = model.generate(input_ids)
# Decode output ids to get generated text
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text
# Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=gr.inputs.Textbox(placeholder="Enter your prompt here (e.g. 'translate English to French: The weather is nice today.')"),
outputs=gr.outputs.Textbox(label="Generated Text"),
title="Text-to-Text Generation with T5",
description="A demo for text-to-text generation using the T5 model.",
)
iface.launch()
|