llama-3-updated / app.py
umair894's picture
Update app.py
720c059 verified
import gradio as gr
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from unsloth.chat_templates import get_chat_template
from unsloth import FastLanguageModel
import torch
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="umair894/llama3",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
)
FastLanguageModel.for_inference(model)
# Apply chat template to the tokenizer
tokenizer = get_chat_template(
tokenizer,
chat_template="llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, # ShareGPT style
map_eos_token=True, # Maps to </s> instead
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("")
]
# Check if terminators are None and provide a default value if needed
terminators = [token_id for token_id in terminators if token_id is not None]
if not terminators:
terminators = [tokenizer.eos_token_id] # Ensure there is a valid EOS token
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"from": "human", "value": user}, {"from": "gpt", "value": assistant}])
conversation.append({"from": "human", "value": message})
input_ids = tokenizer.apply_chat_template(
conversation,
tokenize=True,
add_generation_prompt=True, # Must add for generation
return_tensors="pt",
).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['How can i file for a student loan case?']
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch(debug=True)