File size: 7,553 Bytes
d2f27e3
00adabe
85b9ea4
51a7d9e
f45ee4f
85b9ea4
 
efca2cc
bb262d7
51a7d9e
5f81f1f
3539ef1
 
 
 
 
 
efca2cc
85b9ea4
36093ae
9221192
00adabe
9221192
 
00adabe
 
85b9ea4
 
 
 
 
 
 
 
 
f45ee4f
 
85b9ea4
f45ee4f
85b9ea4
 
f45ee4f
85b9ea4
f45ee4f
bb262d7
d491dbe
16bf29e
 
f45ee4f
85b9ea4
 
6ab5cc8
 
 
 
 
 
 
85b9ea4
 
6fdb3d2
85b9ea4
 
 
 
16bf29e
6ab5cc8
 
85b9ea4
 
6fdb3d2
 
85b9ea4
 
26c517b
37acca7
 
 
e938f7b
37acca7
 
 
206dcd3
 
 
 
37acca7
 
 
3b3b7a4
37acca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92af117
 
37acca7
 
 
 
c9f5fea
 
37acca7
888c470
 
 
37acca7
 
888c470
37acca7
 
 
 
888c470
37acca7
888c470
37acca7
 
 
 
 
85b9ea4
26c517b
 
85b9ea4
 
 
1b84faf
85b9ea4
 
 
37acca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92af117
37acca7
 
 
 
 
 
 
 
 
 
85b9ea4
92af117
 
 
 
37acca7
 
 
 
 
 
 
 
 
 
 
 
 
 
206dcd3
 
 
 
37acca7
 
 
 
 
 
 
92af117
51a7d9e
 
3b3b7a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import torch
import spaces
import gradio as gr
from diffusers import FluxFillPipeline
import random
import numpy as np
from huggingface_hub import hf_hub_download
from PIL import Image, ImageOps


CSS = """
h1 {
    margin-top: 10px
}
"""

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
MAX_SEED = np.iinfo(np.int32).max

repo_id = "black-forest-labs/FLUX.1-Fill-dev"

if torch.cuda.is_available():
    pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")

@spaces.GPU()
def inpaintGen(
        imgMask,
        inpaint_prompt: str,
        guidance: float,
        num_steps: int,
        seed: int,
        randomize_seed: bool,
        progress=gr.Progress(track_tqdm=True)):

    source_path = imgMask["background"]
    mask_path = imgMask["layers"][0]

    if not source_path:
        raise gr.Error("Please upload an image.")

    if not mask_path:
        raise gr.Error("Please draw a mask on the image.")

    source_img = Image.open(source_path).convert("RGB")
    mask_img = Image.open(mask_path)
    alpha_channel=mask_img.split()[3]
    binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
    
    width, height = source_img.size

    new_width = (width // 16) * 16
    new_height = (height // 16) * 16
        
    # If the image size is not already divisible by 16, resize it
    if width != new_width or height != new_height:
        source_img = source_img.resize((new_width, new_height), Image.LANCZOS)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator("cpu").manual_seed(seed)

    result = pipe(
        prompt=inpaint_prompt,
        image=source_img,
        mask_image=binary_mask,
        width=new_width,
        height=new_height,
        num_inference_steps=num_steps,
        generator=generator,
        guidance_scale=guidance,
        max_sequence_length=512,
    ).images[0]
    
    return result, seed



@spaces.GPU()
def outpaintGen(
    img,
    outpaint_prompt: str,
    overlap_top: int,
    overlap_right: int,
    overlap_bottom: int,
    overlap_left: int,
    op_guidance: float,
    op_num_steps: int,
    op_seed: int,
    op_randomize_seed: bool
):
    image = Image.open(img)

    # Convert input to PIL Image if it's a numpy array
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Get original dimensions
    original_width, original_height = image.size
    
    # Calculate new dimensions
    new_width = original_width + overlap_left + overlap_right
    new_height = original_height + overlap_top + overlap_bottom

    # Create new blank mask image (black background)
    mask_image = Image.new('RGB', (new_width, new_height), color='black')

    # Create white rectangle for original image area
    white_area = Image.new('RGB', (original_width, original_height), color='white')

    # Paste white rectangle at the appropriate position
    mask_image.paste(white_area, (overlap_left, overlap_top))

    # Convert to grayscale
    mask_image = mask_image.convert('L')
    mask_image = Image.eval(mask_image, lambda x: 255 - x)
    
    fix_width = (new_width // 16) * 16
    fix_height = (new_height // 16) * 16
        
    # If the image size is not already divisible by 16, resize it
    # if new_width != fix_width or new_height != fix_height:
    #     mask_image = mask_image.resize((fix_width, fix_height), Image.LANCZOS)

    if op_randomize_seed:
        op_seed = random.randint(0, MAX_SEED)
    generator = torch.Generator("cpu").manual_seed(op_seed)

    result = pipe(
        prompt=outpaint_prompt,
        image=image,
        mask_image=mask_image,
        width=fix_width,
        height=fix_height,
        num_inference_steps=op_num_steps,
        generator=generator,
        guidance_scale=op_guidance,
        max_sequence_length=512,
    ).images[0]
    
    return result, seed


with gr.Blocks(theme="ocean", title="Flux.1 Fill dev", css=CSS) as demo:
    gr.HTML("<h1><center>Flux.1 Fill dev</center></h1>")
    gr.HTML("""
        <p>
            <center>
                FLUX.1 Fill [dev] is a 12 billion parameter rectified flow transformer capable of filling areas in existing images based on a text description.
            </center>
        </p>
    """)
    with gr.Tab("Inpainting"):
        with gr.Row():
            with gr.Column():
                imgMask = gr.ImageMask(type="filepath", label="Image", layers=False, height=800)
                inpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="A hat...")
                with gr.Row():
                    Inpaint_sendBtn = gr.Button(value="Submit", variant='primary')
                    Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear")
            image_out = gr.Image(type="pil", label="Output", height=960)
        with gr.Accordion("Advanced ⚙️", open=False):
            guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1)
            num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
            seed = gr.Number(label="Seed", value=42, precision=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
    
        gr.on(
            triggers = [
                inpaint_prompt.submit,
                Inpaint_sendBtn.click,
            ],
            fn = inpaintGen,
            inputs = [
                imgMask,
                inpaint_prompt,
                guidance,
                num_steps,
                seed,
                randomize_seed
            ],
            outputs = [image_out, seed]
        )

    with gr.Tab("Outpainting"):
        with gr.Row():
            with gr.Column():
                img = gr.Image(type="filepath", label="Image", height=800)
                outpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="In city...")
                with gr.Row():
                    outpaint_sendBtn = gr.Button(value="Submit", variant='primary')
                    outpaint_clearBtn = gr.ClearButton([img, outpaint_prompt], value="Clear")
            image_exp = gr.Image(type="pil", label="Output", height=960)
        with gr.Accordion("Advanced ⚙️", open=False):
            with gr.Row():
                overlap_top = gr.Number(label="Top", value=64, precision=0)
                overlap_right = gr.Number(label="Right", value=64, precision=0)
                overlap_bottom = gr.Number(label="Bottom", value=64, precision=0)
                overlap_left = gr.Number(label="Left", value=64, precision=0)
            op_guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1)
            op_num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
            op_seed = gr.Number(label="Seed", value=42, precision=0)
            op_randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
    
        gr.on(
            triggers = [
                outpaint_prompt.submit,
                outpaint_sendBtn.click,
            ],
            fn = outpaintGen,
            inputs = [
                img,
                outpaint_prompt,
                overlap_top,
                overlap_right,
                overlap_bottom,
                overlap_left,
                op_guidance,
                op_num_steps,
                op_seed,
                op_randomize_seed
            ],
            outputs = [image_exp, op_seed]
        )


if __name__ == "__main__":
    demo.launch(show_api=False, share=False)