File size: 3,632 Bytes
d2f27e3
00adabe
85b9ea4
51a7d9e
f45ee4f
85b9ea4
 
efca2cc
bb262d7
51a7d9e
5f81f1f
3539ef1
 
 
 
 
 
efca2cc
85b9ea4
36093ae
9221192
00adabe
9221192
 
00adabe
 
85b9ea4
 
 
 
 
 
 
 
 
f45ee4f
 
85b9ea4
f45ee4f
85b9ea4
 
f45ee4f
85b9ea4
f45ee4f
bb262d7
d491dbe
16bf29e
 
f45ee4f
85b9ea4
 
6ab5cc8
 
 
 
 
 
 
85b9ea4
 
6fdb3d2
85b9ea4
 
 
 
16bf29e
6ab5cc8
 
85b9ea4
 
6fdb3d2
 
85b9ea4
 
26c517b
85b9ea4
 
26c517b
 
85b9ea4
 
 
1b84faf
85b9ea4
 
 
 
 
f45ee4f
85b9ea4
 
 
 
 
 
116610e
 
85b9ea4
 
 
 
 
 
 
51a7d9e
85b9ea4
 
 
 
 
 
 
 
51a7d9e
85b9ea4
51a7d9e
 
 
85b9ea4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import torch
import spaces
import gradio as gr
from diffusers import FluxFillPipeline
import random
import numpy as np
from huggingface_hub import hf_hub_download
from PIL import Image, ImageOps


CSS = """
h1 {
    margin-top: 10px
}
"""

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
MAX_SEED = np.iinfo(np.int32).max

repo_id = "black-forest-labs/FLUX.1-Fill-dev"

if torch.cuda.is_available():
    pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")

@spaces.GPU()
def inpaintGen(
        imgMask,
        inpaint_prompt: str,
        guidance: float,
        num_steps: int,
        seed: int,
        randomize_seed: bool,
        progress=gr.Progress(track_tqdm=True)):

    source_path = imgMask["background"]
    mask_path = imgMask["layers"][0]

    if not source_path:
        raise gr.Error("Please upload an image.")

    if not mask_path:
        raise gr.Error("Please draw a mask on the image.")

    source_img = Image.open(source_path).convert("RGB")
    mask_img = Image.open(mask_path)
    alpha_channel=mask_img.split()[3]
    binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
    
    width, height = source_img.size

    new_width = (width // 16) * 16
    new_height = (height // 16) * 16
        
    # If the image size is not already divisible by 16, resize it
    if width != new_width or height != new_height:
        source_img = source_img.resize((new_width, new_height), Image.LANCZOS)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator("cpu").manual_seed(seed)

    result = pipe(
        prompt=inpaint_prompt,
        image=source_img,
        mask_image=binary_mask,
        width=new_width,
        height=new_height,
        num_inference_steps=num_steps,
        generator=generator,
        guidance_scale=guidance,
        max_sequence_length=512,
    ).images[0]
    
    return result, seed
 

with gr.Blocks(theme="ocean", title="Flux.1 Fill dev", css=CSS) as demo:
    gr.HTML("<h1><center>Flux.1 Fill dev</center></h1>")
    gr.HTML("""
        <p>
            <center>
                FLUX.1 Fill [dev] is a 12 billion parameter rectified flow transformer capable of filling areas in existing images based on a text description.
            </center>
        </p>
    """)
    with gr.Row():
        with gr.Column():
            imgMask = gr.ImageMask(type="filepath", label="Image", layers=False, height=800)
            inpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="A hat...")
            with gr.Row():
                Inpaint_sendBtn = gr.Button(value="Submit", variant='primary')
                Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear")
        image_out = gr.Image(type="pil", label="Output", height=960)
    with gr.Accordion("Advanced ⚙️", open=False):
        guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1)
        num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
        seed = gr.Number(label="Seed", value=42, precision=0)
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

    gr.on(
        triggers = [
            inpaint_prompt.submit,
            Inpaint_sendBtn.click,
        ],
        fn = inpaintGen,
        inputs = [
            imgMask,
            inpaint_prompt,
            guidance,
            num_steps,
            seed,
            randomize_seed
        ],
        outputs = [image_out, seed]
    )

if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)