File size: 4,119 Bytes
d2f27e3
00adabe
85b9ea4
51a7d9e
f45ee4f
85b9ea4
 
efca2cc
bb262d7
51a7d9e
5f81f1f
3539ef1
 
 
 
 
 
 
efca2cc
85b9ea4
36093ae
9221192
00adabe
9221192
 
00adabe
70cac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00adabe
85b9ea4
 
 
 
 
 
 
 
 
f45ee4f
 
85b9ea4
f2fbc2b
 
 
f45ee4f
85b9ea4
 
f45ee4f
85b9ea4
f45ee4f
bb262d7
 
70cac48
bb262d7
f45ee4f
85b9ea4
 
 
 
6fdb3d2
85b9ea4
 
 
 
 
 
 
 
 
6fdb3d2
 
85b9ea4
 
26c517b
85b9ea4
 
26c517b
 
85b9ea4
 
 
 
 
 
 
 
 
f45ee4f
85b9ea4
 
 
 
 
 
116610e
 
85b9ea4
 
 
 
 
 
 
51a7d9e
85b9ea4
 
 
 
 
 
 
 
51a7d9e
85b9ea4
51a7d9e
 
 
85b9ea4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import torch
import spaces
import gradio as gr
from diffusers import FluxFillPipeline
import random
import numpy as np
from huggingface_hub import hf_hub_download
from PIL import Image, ImageOps


CSS = """
h1 {
    margin-top: 10px
}
"""


os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
MAX_SEED = np.iinfo(np.int32).max

repo_id = "black-forest-labs/FLUX.1-Fill-dev"

if torch.cuda.is_available():
    pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")


def create_mask_image(mask_array):
    # Convert the mask to a numpy array if it's not already
    if not isinstance(mask_array, np.ndarray):
        mask_array = np.array(mask_array)
    
    # Create a new array with the same shape as the mask, but only for RGB channels
    processed_mask = np.zeros((mask_array.shape[0], mask_array.shape[1], 3), dtype=np.uint8)
    
    # Set transparent parts (alpha=0) to black (0, 0, 0)
    transparent_mask = mask_array[:, :, 3] == 0
    processed_mask[transparent_mask] = [0, 0, 0]
    
    # Set black parts (RGB=0, 0, 0 and alpha=255) to white (255, 255, 255)
    black_mask = (mask_array[:, :, :3] == [0, 0, 0]).all(axis=2) & (mask_array[:, :, 3] == 255)
    processed_mask[black_mask] = [255, 255, 255]
    
    return Image.fromarray(processed_mask)

@spaces.GPU()
def inpaintGen(
        imgMask,
        inpaint_prompt: str,
        guidance: float,
        num_steps: int,
        seed: int,
        randomize_seed: bool,
        progress=gr.Progress(track_tqdm=True)):

    source_path = imgMask["background"]
    mask_path = imgMask["layers"][0]

    print(f'source_path: {source_path}')
    print(f'mask_path: {mask_path}')  
    
    if not source_path:
        raise gr.Error("Please upload an image.")

    if not mask_path:
        raise gr.Error("Please draw a mask on the image.")

    source_img = Image.open(source_path).convert("RGB")
    mask_img = Image.open(mask_path).convert('L')

    #mask_img = create_mask_image(mask_img)
    
    width, height = source_img.size

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator("cpu").manual_seed(seed)

    result = pipe(
        prompt=inpaint_prompt,
        image=source_img,
        mask_image=mask_img,
        width=width,
        height=height,
        num_inference_steps=num_steps,
        generator=generator,
        guidance_scale=guidance,
        max_sequence_length=512,
    ).images[0]
    
    return result, seed
 

with gr.Blocks(theme="ocean", title="Flux.1 Fill dev", css=CSS) as demo:
    gr.HTML("<h1><center>Flux.1 Fill dev</center></h1>")
    gr.HTML("""
        <p>
            <center>
                A partial redraw of the image based on your prompt words and occluded parts.
            </center>
        </p>
    """)
    with gr.Row():
        with gr.Column():
            imgMask = gr.ImageMask(type="filepath", label="Image", layers=False, height=800)
            inpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="A hat...")
            with gr.Row():
                Inpaint_sendBtn = gr.Button(value="Submit", variant='primary')
                Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear")
        image_out = gr.Image(type="pil", label="Output", height=960)
    with gr.Accordion("Advanced ⚙️", open=False):
        guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1)
        num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
        seed = gr.Number(label="Seed", value=42, precision=0)
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

    gr.on(
        triggers = [
            inpaint_prompt.submit,
            Inpaint_sendBtn.click,
        ],
        fn = inpaintGen,
        inputs = [
            imgMask,
            inpaint_prompt,
            guidance,
            num_steps,
            seed,
            randomize_seed
        ],
        outputs = [image_out, seed]
    )

if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)