Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,119 Bytes
d2f27e3 00adabe 85b9ea4 51a7d9e f45ee4f 85b9ea4 efca2cc bb262d7 51a7d9e 5f81f1f 3539ef1 efca2cc 85b9ea4 36093ae 9221192 00adabe 9221192 00adabe 70cac48 00adabe 85b9ea4 f45ee4f 85b9ea4 f2fbc2b f45ee4f 85b9ea4 f45ee4f 85b9ea4 f45ee4f bb262d7 70cac48 bb262d7 f45ee4f 85b9ea4 6fdb3d2 85b9ea4 6fdb3d2 85b9ea4 26c517b 85b9ea4 26c517b 85b9ea4 f45ee4f 85b9ea4 116610e 85b9ea4 51a7d9e 85b9ea4 51a7d9e 85b9ea4 51a7d9e 85b9ea4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os
import torch
import spaces
import gradio as gr
from diffusers import FluxFillPipeline
import random
import numpy as np
from huggingface_hub import hf_hub_download
from PIL import Image, ImageOps
CSS = """
h1 {
margin-top: 10px
}
"""
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
MAX_SEED = np.iinfo(np.int32).max
repo_id = "black-forest-labs/FLUX.1-Fill-dev"
if torch.cuda.is_available():
pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")
def create_mask_image(mask_array):
# Convert the mask to a numpy array if it's not already
if not isinstance(mask_array, np.ndarray):
mask_array = np.array(mask_array)
# Create a new array with the same shape as the mask, but only for RGB channels
processed_mask = np.zeros((mask_array.shape[0], mask_array.shape[1], 3), dtype=np.uint8)
# Set transparent parts (alpha=0) to black (0, 0, 0)
transparent_mask = mask_array[:, :, 3] == 0
processed_mask[transparent_mask] = [0, 0, 0]
# Set black parts (RGB=0, 0, 0 and alpha=255) to white (255, 255, 255)
black_mask = (mask_array[:, :, :3] == [0, 0, 0]).all(axis=2) & (mask_array[:, :, 3] == 255)
processed_mask[black_mask] = [255, 255, 255]
return Image.fromarray(processed_mask)
@spaces.GPU()
def inpaintGen(
imgMask,
inpaint_prompt: str,
guidance: float,
num_steps: int,
seed: int,
randomize_seed: bool,
progress=gr.Progress(track_tqdm=True)):
source_path = imgMask["background"]
mask_path = imgMask["layers"][0]
print(f'source_path: {source_path}')
print(f'mask_path: {mask_path}')
if not source_path:
raise gr.Error("Please upload an image.")
if not mask_path:
raise gr.Error("Please draw a mask on the image.")
source_img = Image.open(source_path).convert("RGB")
mask_img = Image.open(mask_path).convert('L')
#mask_img = create_mask_image(mask_img)
width, height = source_img.size
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator("cpu").manual_seed(seed)
result = pipe(
prompt=inpaint_prompt,
image=source_img,
mask_image=mask_img,
width=width,
height=height,
num_inference_steps=num_steps,
generator=generator,
guidance_scale=guidance,
max_sequence_length=512,
).images[0]
return result, seed
with gr.Blocks(theme="ocean", title="Flux.1 Fill dev", css=CSS) as demo:
gr.HTML("<h1><center>Flux.1 Fill dev</center></h1>")
gr.HTML("""
<p>
<center>
A partial redraw of the image based on your prompt words and occluded parts.
</center>
</p>
""")
with gr.Row():
with gr.Column():
imgMask = gr.ImageMask(type="filepath", label="Image", layers=False, height=800)
inpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="A hat...")
with gr.Row():
Inpaint_sendBtn = gr.Button(value="Submit", variant='primary')
Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear")
image_out = gr.Image(type="pil", label="Output", height=960)
with gr.Accordion("Advanced ⚙️", open=False):
guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1)
num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
seed = gr.Number(label="Seed", value=42, precision=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.on(
triggers = [
inpaint_prompt.submit,
Inpaint_sendBtn.click,
],
fn = inpaintGen,
inputs = [
imgMask,
inpaint_prompt,
guidance,
num_steps,
seed,
randomize_seed
],
outputs = [image_out, seed]
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False) |