File size: 9,306 Bytes
d2f27e3
00adabe
85b9ea4
51a7d9e
f45ee4f
85b9ea4
 
efca2cc
bb262d7
51a7d9e
5f81f1f
3539ef1
 
 
 
 
 
efca2cc
85b9ea4
36093ae
9221192
00adabe
9221192
 
00adabe
 
bc59787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85b9ea4
 
 
 
 
 
 
 
 
f45ee4f
 
85b9ea4
f45ee4f
85b9ea4
 
f45ee4f
85b9ea4
f45ee4f
bb262d7
d491dbe
16bf29e
 
f45ee4f
85b9ea4
 
6ab5cc8
 
 
 
 
 
 
85b9ea4
 
6fdb3d2
85b9ea4
bc59787
 
 
 
 
 
 
 
 
 
85b9ea4
26c517b
37acca7
 
cd3265c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37acca7
 
 
 
cd3265c
 
 
 
 
 
bc59787
 
 
 
37acca7
 
 
cd3265c
 
 
 
 
 
 
 
 
37acca7
cd3265c
37acca7
bc59787
 
37acca7
bc59787
 
 
 
 
 
 
 
 
 
37acca7
 
 
85b9ea4
26c517b
 
85b9ea4
 
 
1b84faf
85b9ea4
 
 
37acca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92af117
37acca7
 
 
 
 
 
 
 
 
 
cd3265c
 
 
 
 
85b9ea4
cd3265c
 
37acca7
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3265c
 
 
 
 
 
37acca7
 
 
 
 
 
 
92af117
51a7d9e
 
3b3b7a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import torch
import spaces
import gradio as gr
from diffusers import FluxFillPipeline
import random
import numpy as np
from huggingface_hub import hf_hub_download
from PIL import Image, ImageOps


CSS = """
h1 {
    margin-top: 10px
}
"""

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
MAX_SEED = np.iinfo(np.int32).max

repo_id = "black-forest-labs/FLUX.1-Fill-dev"

if torch.cuda.is_available():
    pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")

@spaces.GPU()
def gen(
        prompt,
        image,
        mask_image,
        width,
        height,
        num_inference_steps,
        seed,
        guidance_scale, 
):
    generator = torch.Generator("cpu").manual_seed(seed)
    result = pipe(
        prompt=prompt,
        image=image,
        mask_image=mask_image,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=guidance_scale,
        max_sequence_length=512,
    ).images[0]
    
    return result


def inpaintGen(
        imgMask,
        inpaint_prompt: str,
        guidance: float,
        num_steps: int,
        seed: int,
        randomize_seed: bool,
        progress=gr.Progress(track_tqdm=True)):

    source_path = imgMask["background"]
    mask_path = imgMask["layers"][0]

    if not source_path:
        raise gr.Error("Please upload an image.")

    if not mask_path:
        raise gr.Error("Please draw a mask on the image.")

    source_img = Image.open(source_path).convert("RGB")
    mask_img = Image.open(mask_path)
    alpha_channel=mask_img.split()[3]
    binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
    
    width, height = source_img.size

    new_width = (width // 16) * 16
    new_height = (height // 16) * 16
        
    # If the image size is not already divisible by 16, resize it
    if width != new_width or height != new_height:
        source_img = source_img.resize((new_width, new_height), Image.LANCZOS)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator("cpu").manual_seed(seed)

    result = gen(
        inpaint_prompt,
        source_img,
        binary_mask,
        new_width,
        new_height,
        num_steps,
        seed,
        guidance,
    )
    
    return result, seed


def add_border_and_mask(image, zoom_all=1.0, zoom_left=0, zoom_right=0, zoom_up=0, zoom_down=0, overlap=0.01):
    """Adds a black border around the image with individual side control and mask overlap"""
    orig_width, orig_height = image.size

    # Calculate padding for each side (in pixels)
    left_pad = int(orig_width * zoom_left)
    right_pad = int(orig_width * zoom_right)
    top_pad = int(orig_height * zoom_up)
    bottom_pad = int(orig_height * zoom_down)

    # Calculate overlap in pixels
    overlap_left = int(orig_width * overlap)
    overlap_right = int(orig_width * overlap)
    overlap_top = int(orig_height * overlap)
    overlap_bottom = int(orig_height * overlap)

    # If using the all-sides zoom, add it to each side
    if zoom_all > 1.0:
        extra_each_side = (zoom_all - 1.0) / 2
        left_pad += int(orig_width * extra_each_side)
        right_pad += int(orig_width * extra_each_side)
        top_pad += int(orig_height * extra_each_side)
        bottom_pad += int(orig_height * extra_each_side)

    # Calculate new dimensions (ensure they're multiples of 32)
    new_width = 32 * round((orig_width + left_pad + right_pad) / 32)
    new_height = 32 * round((orig_height + top_pad + bottom_pad) / 32)

    # Create new image with black border
    bordered_image = Image.new("RGB", (new_width, new_height), (0, 0, 0))
    # Paste original image in position
    paste_x = left_pad
    paste_y = top_pad
    bordered_image.paste(image, (paste_x, paste_y))

    # Create mask (white where the border is, black where the original image was)
    mask = Image.new("L", (new_width, new_height), 255)  # White background
    # Paste black rectangle with overlap adjustment
    mask.paste(
        0,
        (
            paste_x + overlap_left,  # Left edge moves right
            paste_y + overlap_top,  # Top edge moves down
            paste_x + orig_width - overlap_right,  # Right edge moves left
            paste_y + orig_height - overlap_bottom,  # Bottom edge moves up
        ),
    )

    return bordered_image, mask


def outpaintGen(
    img,
    outpaint_prompt: str,
    overlap: float,
    zoom_all: float,
    zoom_left: float,
    zoom_right: float,
    zoom_up: float,
    zoom_down: float,
    guidance: float,
    num_steps: int,
    seed: int,
    randomize_seed: bool
):
    image = Image.open(img)

    new_image, mask_image = add_border_and_mask(
            image,
            zoom_all=zoom_all,
            zoom_left=zoom_left,
            zoom_right=zoom_right,
            zoom_up=zoom_up,
            zoom_down=zoom_down,
            overlap=overlap,
    )

    width, height = new_image.size
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    result = gen(
        outpaint_prompt,
        new_image,
        mask_image,
        width,
        height,
        num_steps,
        seed,
        guidance,
    )
    
    return result, seed


with gr.Blocks(theme="ocean", title="Flux.1 Fill dev", css=CSS) as demo:
    gr.HTML("<h1><center>Flux.1 Fill dev</center></h1>")
    gr.HTML("""
        <p>
            <center>
                FLUX.1 Fill [dev] is a 12 billion parameter rectified flow transformer capable of filling areas in existing images based on a text description.
            </center>
        </p>
    """)
    with gr.Tab("Inpainting"):
        with gr.Row():
            with gr.Column():
                imgMask = gr.ImageMask(type="filepath", label="Image", layers=False, height=800)
                inpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="A hat...")
                with gr.Row():
                    Inpaint_sendBtn = gr.Button(value="Submit", variant='primary')
                    Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear")
            image_out = gr.Image(type="pil", label="Output", height=960)
        with gr.Accordion("Advanced ⚙️", open=False):
            guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1)
            num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
            seed = gr.Number(label="Seed", value=42, precision=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
    
        gr.on(
            triggers = [
                inpaint_prompt.submit,
                Inpaint_sendBtn.click,
            ],
            fn = inpaintGen,
            inputs = [
                imgMask,
                inpaint_prompt,
                guidance,
                num_steps,
                seed,
                randomize_seed
            ],
            outputs = [image_out, seed]
        )

    with gr.Tab("Outpainting"):
        with gr.Row():
            with gr.Column():
                img = gr.Image(type="filepath", label="Image", height=800)
                outpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="In city...")
                with gr.Row():
                    outpaint_sendBtn = gr.Button(value="Submit", variant='primary')
                    outpaint_clearBtn = gr.ClearButton([img, outpaint_prompt], value="Clear")
            image_exp = gr.Image(type="pil", label="Output", height=960)
        with gr.Accordion("Advanced ⚙️", open=False):
            overlap = gr.Slider(label="Overlap", minimum=0.01, maximum=0.25, value=0.01, step=0.01)
            zoom_all = gr.Slider(label="Zoom Out Amount (All Sides)", minimum=1.0, maximum=3.0, value=1.0, step=0.1)
            with gr.Row():
                zoom_left = gr.Slider(label="Left", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
                zoom_right = gr.Slider(label="Right", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
            with gr.Row():
                zoom_up = gr.Slider(label="Up", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
                zoom_down = gr.Slider(label="Down", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
            op_guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1)
            op_num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
            op_seed = gr.Number(label="Seed", value=42, precision=0)
            op_randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
    
        gr.on(
            triggers = [
                outpaint_prompt.submit,
                outpaint_sendBtn.click,
            ],
            fn = outpaintGen,
            inputs = [
                img,
                outpaint_prompt,
                overlap,
                zoom_all,
                zoom_left,
                zoom_right,
                zoom_up,
                zoom_down,
                op_guidance,
                op_num_steps,
                op_seed,
                op_randomize_seed
            ],
            outputs = [image_exp, op_seed]
        )


if __name__ == "__main__":
    demo.launch(show_api=False, share=False)