Flux.1-Fill-dev / app.py
vilarin's picture
Update app.py
3b3b7a4 verified
raw
history blame
7.55 kB
import os
import torch
import spaces
import gradio as gr
from diffusers import FluxFillPipeline
import random
import numpy as np
from huggingface_hub import hf_hub_download
from PIL import Image, ImageOps
CSS = """
h1 {
margin-top: 10px
}
"""
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
MAX_SEED = np.iinfo(np.int32).max
repo_id = "black-forest-labs/FLUX.1-Fill-dev"
if torch.cuda.is_available():
pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")
@spaces.GPU()
def inpaintGen(
imgMask,
inpaint_prompt: str,
guidance: float,
num_steps: int,
seed: int,
randomize_seed: bool,
progress=gr.Progress(track_tqdm=True)):
source_path = imgMask["background"]
mask_path = imgMask["layers"][0]
if not source_path:
raise gr.Error("Please upload an image.")
if not mask_path:
raise gr.Error("Please draw a mask on the image.")
source_img = Image.open(source_path).convert("RGB")
mask_img = Image.open(mask_path)
alpha_channel=mask_img.split()[3]
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
width, height = source_img.size
new_width = (width // 16) * 16
new_height = (height // 16) * 16
# If the image size is not already divisible by 16, resize it
if width != new_width or height != new_height:
source_img = source_img.resize((new_width, new_height), Image.LANCZOS)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator("cpu").manual_seed(seed)
result = pipe(
prompt=inpaint_prompt,
image=source_img,
mask_image=binary_mask,
width=new_width,
height=new_height,
num_inference_steps=num_steps,
generator=generator,
guidance_scale=guidance,
max_sequence_length=512,
).images[0]
return result, seed
@spaces.GPU()
def outpaintGen(
img,
outpaint_prompt: str,
overlap_top: int,
overlap_right: int,
overlap_bottom: int,
overlap_left: int,
op_guidance: float,
op_num_steps: int,
op_seed: int,
op_randomize_seed: bool
):
image = Image.open(img)
# Convert input to PIL Image if it's a numpy array
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Get original dimensions
original_width, original_height = image.size
# Calculate new dimensions
new_width = original_width + overlap_left + overlap_right
new_height = original_height + overlap_top + overlap_bottom
# Create new blank mask image (black background)
mask_image = Image.new('RGB', (new_width, new_height), color='black')
# Create white rectangle for original image area
white_area = Image.new('RGB', (original_width, original_height), color='white')
# Paste white rectangle at the appropriate position
mask_image.paste(white_area, (overlap_left, overlap_top))
# Convert to grayscale
mask_image = mask_image.convert('L')
mask_image = Image.eval(mask_image, lambda x: 255 - x)
fix_width = (new_width // 16) * 16
fix_height = (new_height // 16) * 16
# If the image size is not already divisible by 16, resize it
# if new_width != fix_width or new_height != fix_height:
# mask_image = mask_image.resize((fix_width, fix_height), Image.LANCZOS)
if op_randomize_seed:
op_seed = random.randint(0, MAX_SEED)
generator = torch.Generator("cpu").manual_seed(op_seed)
result = pipe(
prompt=outpaint_prompt,
image=image,
mask_image=mask_image,
width=fix_width,
height=fix_height,
num_inference_steps=op_num_steps,
generator=generator,
guidance_scale=op_guidance,
max_sequence_length=512,
).images[0]
return result, seed
with gr.Blocks(theme="ocean", title="Flux.1 Fill dev", css=CSS) as demo:
gr.HTML("<h1><center>Flux.1 Fill dev</center></h1>")
gr.HTML("""
<p>
<center>
FLUX.1 Fill [dev] is a 12 billion parameter rectified flow transformer capable of filling areas in existing images based on a text description.
</center>
</p>
""")
with gr.Tab("Inpainting"):
with gr.Row():
with gr.Column():
imgMask = gr.ImageMask(type="filepath", label="Image", layers=False, height=800)
inpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="A hat...")
with gr.Row():
Inpaint_sendBtn = gr.Button(value="Submit", variant='primary')
Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear")
image_out = gr.Image(type="pil", label="Output", height=960)
with gr.Accordion("Advanced ⚙️", open=False):
guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1)
num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
seed = gr.Number(label="Seed", value=42, precision=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.on(
triggers = [
inpaint_prompt.submit,
Inpaint_sendBtn.click,
],
fn = inpaintGen,
inputs = [
imgMask,
inpaint_prompt,
guidance,
num_steps,
seed,
randomize_seed
],
outputs = [image_out, seed]
)
with gr.Tab("Outpainting"):
with gr.Row():
with gr.Column():
img = gr.Image(type="filepath", label="Image", height=800)
outpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="In city...")
with gr.Row():
outpaint_sendBtn = gr.Button(value="Submit", variant='primary')
outpaint_clearBtn = gr.ClearButton([img, outpaint_prompt], value="Clear")
image_exp = gr.Image(type="pil", label="Output", height=960)
with gr.Accordion("Advanced ⚙️", open=False):
with gr.Row():
overlap_top = gr.Number(label="Top", value=64, precision=0)
overlap_right = gr.Number(label="Right", value=64, precision=0)
overlap_bottom = gr.Number(label="Bottom", value=64, precision=0)
overlap_left = gr.Number(label="Left", value=64, precision=0)
op_guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1)
op_num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
op_seed = gr.Number(label="Seed", value=42, precision=0)
op_randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.on(
triggers = [
outpaint_prompt.submit,
outpaint_sendBtn.click,
],
fn = outpaintGen,
inputs = [
img,
outpaint_prompt,
overlap_top,
overlap_right,
overlap_bottom,
overlap_left,
op_guidance,
op_num_steps,
op_seed,
op_randomize_seed
],
outputs = [image_exp, op_seed]
)
if __name__ == "__main__":
demo.launch(show_api=False, share=False)