Flux.1-Fill-dev / flux /cli_control.py
vilarin's picture
Upload 16 files
021dc80 verified
raw
history blame
11.9 kB
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
import torch
from fire import Fire
from transformers import pipeline
from flux.modules.image_embedders import CannyImageEncoder, DepthImageEncoder
from flux.sampling import denoise, get_noise, get_schedule, prepare_control, unpack
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image
@dataclass
class SamplingOptions:
prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
img_cond_path: str
lora_scale: float | None
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the prompt or write a command starting with a slash:\n"
"- '/w <width>' will set the width of the generated image\n"
"- '/h <height>' will set the height of the generated image\n"
"- '/s <seed>' sets the next seed\n"
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
"- '/n <steps>' sets the number of steps\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/w"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, width = prompt.split()
options.width = 16 * (int(width) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height *options.width/1e6:.2f}MP)"
)
elif prompt.startswith("/h"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, height = prompt.split()
options.height = 16 * (int(height) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height *options.width/1e6:.2f}MP)"
)
elif prompt.startswith("/g"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, guidance = prompt.split()
options.guidance = float(guidance)
print(f"Setting guidance to {options.guidance}")
elif prompt.startswith("/s"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, seed = prompt.split()
options.seed = int(seed)
print(f"Setting seed to {options.seed}")
elif prompt.startswith("/n"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, steps = prompt.split()
options.num_steps = int(steps)
print(f"Setting number of steps to {options.num_steps}")
elif prompt.startswith("/q"):
print("Quitting")
return None
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
if prompt != "":
options.prompt = prompt
return options
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
if options is None:
return None
user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the conditioning image or write a command starting with a slash:\n"
"- '/q' to quit"
)
while True:
img_cond_path = input(user_question)
if img_cond_path.startswith("/"):
if img_cond_path.startswith("/q"):
print("Quitting")
return None
else:
if not img_cond_path.startswith("/h"):
print(f"Got invalid command '{img_cond_path}'\n{usage}")
print(usage)
continue
if img_cond_path == "":
break
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
(".jpg", ".jpeg", ".png", ".webp")
):
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
continue
options.img_cond_path = img_cond_path
break
return options
def parse_lora_scale(options: SamplingOptions | None) -> tuple[SamplingOptions | None, bool]:
changed = False
if options is None:
return None, changed
user_question = "Next lora scale (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the lora scale or write a command starting with a slash:\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/q"):
print("Quitting")
return None, changed
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
if prompt != "":
options.lora_scale = float(prompt)
changed = True
return options, changed
@torch.inference_mode()
def main(
name: str,
width: int = 1024,
height: int = 1024,
seed: int | None = None,
prompt: str = "a robot made out of gold",
device: str = "cuda" if torch.cuda.is_available() else "cpu",
num_steps: int = 50,
loop: bool = False,
guidance: float | None = None,
offload: bool = False,
output_dir: str = "output",
add_sampling_metadata: bool = True,
img_cond_path: str = "assets/robot.webp",
lora_scale: float | None = 0.85,
):
"""
Sample the flux model. Either interactively (set `--loop`) or run for a
single image.
Args:
height: height of the sample in pixels (should be a multiple of 16)
width: width of the sample in pixels (should be a multiple of 16)
seed: Set a seed for sampling
output_name: where to save the output image, `{idx}` will be replaced
by the index of the sample
prompt: Prompt used for sampling
device: Pytorch device
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
loop: start an interactive session and sample multiple times
guidance: guidance value used for guidance distillation
add_sampling_metadata: Add the prompt to the image Exif metadata
img_cond_path: path to conditioning image (jpeg/png/webp)
"""
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
assert name in [
"flux-dev-canny",
"flux-dev-depth",
"flux-dev-canny-lora",
"flux-dev-depth-lora",
], f"Got unknown model name: {name}"
if guidance is None:
if name in ["flux-dev-canny", "flux-dev-canny-lora"]:
guidance = 30.0
elif name in ["flux-dev-depth", "flux-dev-depth-lora"]:
guidance = 10.0
else:
raise NotImplementedError()
if name not in configs:
available = ", ".join(configs.keys())
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
torch_device = torch.device(device)
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
# init all components
t5 = load_t5(torch_device, max_length=512)
clip = load_clip(torch_device)
model = load_flow_model(name, device="cpu" if offload else torch_device)
ae = load_ae(name, device="cpu" if offload else torch_device)
# set lora scale
if "lora" in name and lora_scale is not None:
for _, module in model.named_modules():
if hasattr(module, "set_scale"):
module.set_scale(lora_scale)
if name in ["flux-dev-depth", "flux-dev-depth-lora"]:
img_embedder = DepthImageEncoder(torch_device)
elif name in ["flux-dev-canny", "flux-dev-canny-lora"]:
img_embedder = CannyImageEncoder(torch_device)
else:
raise NotImplementedError()
rng = torch.Generator(device="cpu")
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
img_cond_path=img_cond_path,
lora_scale=lora_scale,
)
if loop:
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
if "lora" in name:
opts, changed = parse_lora_scale(opts)
if changed:
# update the lora scale:
for _, module in model.named_modules():
if hasattr(module, "set_scale"):
module.set_scale(opts.lora_scale)
while opts is not None:
if opts.seed is None:
opts.seed = rng.seed()
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
t0 = time.perf_counter()
# prepare input
x = get_noise(
1,
opts.height,
opts.width,
device=torch_device,
dtype=torch.bfloat16,
seed=opts.seed,
)
opts.seed = None
if offload:
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
inp = prepare_control(
t5,
clip,
x,
prompt=opts.prompt,
ae=ae,
encoder=img_embedder,
img_cond_path=opts.img_cond_path,
)
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# offload TEs and AE to CPU, load model to gpu
if offload:
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# denoise initial noise
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
# offload model, load autoencoder to gpu
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s")
idx = save_image(nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
if "lora" in name:
opts, changed = parse_lora_scale(opts)
if changed:
# update the lora scale:
for _, module in model.named_modules():
if hasattr(module, "set_scale"):
module.set_scale(opts.lora_scale)
else:
opts = None
def app():
Fire(main)
if __name__ == "__main__":
app()