Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import numpy as np | |
import torch | |
from einops import rearrange, repeat | |
from PIL import Image | |
from safetensors.torch import load_file as load_sft | |
from torch import nn | |
from transformers import AutoModelForDepthEstimation, AutoProcessor, SiglipImageProcessor, SiglipVisionModel | |
from flux.util import print_load_warning | |
class DepthImageEncoder: | |
depth_model_name = "LiheYoung/depth-anything-large-hf" | |
def __init__(self, device): | |
self.device = device | |
self.depth_model = AutoModelForDepthEstimation.from_pretrained(self.depth_model_name).to(device) | |
self.processor = AutoProcessor.from_pretrained(self.depth_model_name) | |
def __call__(self, img: torch.Tensor) -> torch.Tensor: | |
hw = img.shape[-2:] | |
img = torch.clamp(img, -1.0, 1.0) | |
img_byte = ((img + 1.0) * 127.5).byte() | |
img = self.processor(img_byte, return_tensors="pt")["pixel_values"] | |
depth = self.depth_model(img.to(self.device)).predicted_depth | |
depth = repeat(depth, "b h w -> b 3 h w") | |
depth = torch.nn.functional.interpolate(depth, hw, mode="bicubic", antialias=True) | |
depth = depth / 127.5 - 1.0 | |
return depth | |
class CannyImageEncoder: | |
def __init__( | |
self, | |
device, | |
min_t: int = 50, | |
max_t: int = 200, | |
): | |
self.device = device | |
self.min_t = min_t | |
self.max_t = max_t | |
def __call__(self, img: torch.Tensor) -> torch.Tensor: | |
assert img.shape[0] == 1, "Only batch size 1 is supported" | |
img = rearrange(img[0], "c h w -> h w c") | |
img = torch.clamp(img, -1.0, 1.0) | |
img_np = ((img + 1.0) * 127.5).numpy().astype(np.uint8) | |
# Apply Canny edge detection | |
canny = cv2.Canny(img_np, self.min_t, self.max_t) | |
# Convert back to torch tensor and reshape | |
canny = torch.from_numpy(canny).float() / 127.5 - 1.0 | |
canny = rearrange(canny, "h w -> 1 1 h w") | |
canny = repeat(canny, "b 1 ... -> b 3 ...") | |
return canny.to(self.device) | |
class ReduxImageEncoder(nn.Module): | |
siglip_model_name = "google/siglip-so400m-patch14-384" | |
def __init__( | |
self, | |
device, | |
redux_dim: int = 1152, | |
txt_in_features: int = 4096, | |
redux_path: str | None = os.getenv("FLUX_REDUX"), | |
dtype=torch.bfloat16, | |
) -> None: | |
assert redux_path is not None, "Redux path must be provided" | |
super().__init__() | |
self.redux_dim = redux_dim | |
self.device = device if isinstance(device, torch.device) else torch.device(device) | |
self.dtype = dtype | |
with self.device: | |
self.redux_up = nn.Linear(redux_dim, txt_in_features * 3, dtype=dtype) | |
self.redux_down = nn.Linear(txt_in_features * 3, txt_in_features, dtype=dtype) | |
sd = load_sft(redux_path, device=str(device)) | |
missing, unexpected = self.load_state_dict(sd, strict=False, assign=True) | |
print_load_warning(missing, unexpected) | |
self.siglip = SiglipVisionModel.from_pretrained(self.siglip_model_name).to(dtype=dtype) | |
self.normalize = SiglipImageProcessor.from_pretrained(self.siglip_model_name) | |
def __call__(self, x: Image.Image) -> torch.Tensor: | |
imgs = self.normalize.preprocess(images=[x], do_resize=True, return_tensors="pt", do_convert_rgb=True) | |
_encoded_x = self.siglip(**imgs.to(device=self.device, dtype=self.dtype)).last_hidden_state | |
projected_x = self.redux_down(nn.functional.silu(self.redux_up(_encoded_x))) | |
return projected_x | |