Spaces:
Running
on
Zero
Running
on
Zero
Delete flux
Browse files- flux/__init__.py +0 -13
- flux/__main__.py +0 -4
- flux/api.py +0 -225
- flux/cli.py +0 -238
- flux/cli_control.py +0 -347
- flux/cli_fill.py +0 -334
- flux/cli_redux.py +0 -279
- flux/math.py +0 -30
- flux/model.py +0 -143
- flux/modules/autoencoder.py +0 -312
- flux/modules/conditioner.py +0 -37
- flux/modules/image_embedders.py +0 -103
- flux/modules/layers.py +0 -253
- flux/modules/lora.py +0 -94
- flux/sampling.py +0 -282
- flux/util.py +0 -447
flux/__init__.py
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
try:
|
2 |
-
from ._version import (
|
3 |
-
version as __version__, # type: ignore
|
4 |
-
version_tuple,
|
5 |
-
)
|
6 |
-
except ImportError:
|
7 |
-
__version__ = "unknown (no version information available)"
|
8 |
-
version_tuple = (0, 0, "unknown", "noinfo")
|
9 |
-
|
10 |
-
from pathlib import Path
|
11 |
-
|
12 |
-
PACKAGE = __package__.replace("_", "-")
|
13 |
-
PACKAGE_ROOT = Path(__file__).parent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/__main__.py
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
from .cli import app
|
2 |
-
|
3 |
-
if __name__ == "__main__":
|
4 |
-
app()
|
|
|
|
|
|
|
|
|
|
flux/api.py
DELETED
@@ -1,225 +0,0 @@
|
|
1 |
-
import io
|
2 |
-
import os
|
3 |
-
import time
|
4 |
-
from pathlib import Path
|
5 |
-
|
6 |
-
import requests
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
API_URL = "https://api.bfl.ml"
|
10 |
-
API_ENDPOINTS = {
|
11 |
-
"flux.1-pro": "flux-pro",
|
12 |
-
"flux.1-dev": "flux-dev",
|
13 |
-
"flux.1.1-pro": "flux-pro-1.1",
|
14 |
-
}
|
15 |
-
|
16 |
-
|
17 |
-
class ApiException(Exception):
|
18 |
-
def __init__(self, status_code: int, detail: str | list[dict] | None = None):
|
19 |
-
super().__init__()
|
20 |
-
self.detail = detail
|
21 |
-
self.status_code = status_code
|
22 |
-
|
23 |
-
def __str__(self) -> str:
|
24 |
-
return self.__repr__()
|
25 |
-
|
26 |
-
def __repr__(self) -> str:
|
27 |
-
if self.detail is None:
|
28 |
-
message = None
|
29 |
-
elif isinstance(self.detail, str):
|
30 |
-
message = self.detail
|
31 |
-
else:
|
32 |
-
message = "[" + ",".join(d["msg"] for d in self.detail) + "]"
|
33 |
-
return f"ApiException({self.status_code=}, {message=}, detail={self.detail})"
|
34 |
-
|
35 |
-
|
36 |
-
class ImageRequest:
|
37 |
-
def __init__(
|
38 |
-
self,
|
39 |
-
# api inputs
|
40 |
-
prompt: str,
|
41 |
-
name: str = "flux.1.1-pro",
|
42 |
-
width: int | None = None,
|
43 |
-
height: int | None = None,
|
44 |
-
num_steps: int | None = None,
|
45 |
-
prompt_upsampling: bool | None = None,
|
46 |
-
seed: int | None = None,
|
47 |
-
guidance: float | None = None,
|
48 |
-
interval: float | None = None,
|
49 |
-
safety_tolerance: int | None = None,
|
50 |
-
# behavior of this class
|
51 |
-
validate: bool = True,
|
52 |
-
launch: bool = True,
|
53 |
-
api_key: str | None = None,
|
54 |
-
):
|
55 |
-
"""
|
56 |
-
Manages an image generation request to the API.
|
57 |
-
|
58 |
-
All parameters not specified will use the API defaults.
|
59 |
-
|
60 |
-
Args:
|
61 |
-
prompt: Text prompt for image generation.
|
62 |
-
width: Width of the generated image in pixels. Must be a multiple of 32.
|
63 |
-
height: Height of the generated image in pixels. Must be a multiple of 32.
|
64 |
-
name: Which model version to use
|
65 |
-
num_steps: Number of steps for the image generation process.
|
66 |
-
prompt_upsampling: Whether to perform upsampling on the prompt.
|
67 |
-
seed: Optional seed for reproducibility.
|
68 |
-
guidance: Guidance scale for image generation.
|
69 |
-
safety_tolerance: Tolerance level for input and output moderation.
|
70 |
-
Between 0 and 6, 0 being most strict, 6 being least strict.
|
71 |
-
validate: Run input validation
|
72 |
-
launch: Directly launches request
|
73 |
-
api_key: Your API key if not provided by the environment
|
74 |
-
|
75 |
-
Raises:
|
76 |
-
ValueError: For invalid input, when `validate`
|
77 |
-
ApiException: For errors raised from the API
|
78 |
-
"""
|
79 |
-
if validate:
|
80 |
-
if name not in API_ENDPOINTS.keys():
|
81 |
-
raise ValueError(f"Invalid model {name}")
|
82 |
-
elif width is not None and width % 32 != 0:
|
83 |
-
raise ValueError(f"width must be divisible by 32, got {width}")
|
84 |
-
elif width is not None and not (256 <= width <= 1440):
|
85 |
-
raise ValueError(f"width must be between 256 and 1440, got {width}")
|
86 |
-
elif height is not None and height % 32 != 0:
|
87 |
-
raise ValueError(f"height must be divisible by 32, got {height}")
|
88 |
-
elif height is not None and not (256 <= height <= 1440):
|
89 |
-
raise ValueError(f"height must be between 256 and 1440, got {height}")
|
90 |
-
elif num_steps is not None and not (1 <= num_steps <= 50):
|
91 |
-
raise ValueError(f"steps must be between 1 and 50, got {num_steps}")
|
92 |
-
elif guidance is not None and not (1.5 <= guidance <= 5.0):
|
93 |
-
raise ValueError(f"guidance must be between 1.5 and 4, got {guidance}")
|
94 |
-
elif interval is not None and not (1.0 <= interval <= 4.0):
|
95 |
-
raise ValueError(f"interval must be between 1 and 4, got {interval}")
|
96 |
-
elif safety_tolerance is not None and not (0 <= safety_tolerance <= 6.0):
|
97 |
-
raise ValueError(f"safety_tolerance must be between 0 and 6, got {interval}")
|
98 |
-
|
99 |
-
if name == "flux.1-dev":
|
100 |
-
if interval is not None:
|
101 |
-
raise ValueError("Interval is not supported for flux.1-dev")
|
102 |
-
if name == "flux.1.1-pro":
|
103 |
-
if interval is not None or num_steps is not None or guidance is not None:
|
104 |
-
raise ValueError("Interval, num_steps and guidance are not supported for " "flux.1.1-pro")
|
105 |
-
|
106 |
-
self.name = name
|
107 |
-
self.request_json = {
|
108 |
-
"prompt": prompt,
|
109 |
-
"width": width,
|
110 |
-
"height": height,
|
111 |
-
"steps": num_steps,
|
112 |
-
"prompt_upsampling": prompt_upsampling,
|
113 |
-
"seed": seed,
|
114 |
-
"guidance": guidance,
|
115 |
-
"interval": interval,
|
116 |
-
"safety_tolerance": safety_tolerance,
|
117 |
-
}
|
118 |
-
self.request_json = {key: value for key, value in self.request_json.items() if value is not None}
|
119 |
-
|
120 |
-
self.request_id: str | None = None
|
121 |
-
self.result: dict | None = None
|
122 |
-
self._image_bytes: bytes | None = None
|
123 |
-
self._url: str | None = None
|
124 |
-
if api_key is None:
|
125 |
-
self.api_key = os.environ.get("BFL_API_KEY")
|
126 |
-
else:
|
127 |
-
self.api_key = api_key
|
128 |
-
|
129 |
-
if launch:
|
130 |
-
self.request()
|
131 |
-
|
132 |
-
def request(self):
|
133 |
-
"""
|
134 |
-
Request to generate the image.
|
135 |
-
"""
|
136 |
-
if self.request_id is not None:
|
137 |
-
return
|
138 |
-
response = requests.post(
|
139 |
-
f"{API_URL}/v1/{API_ENDPOINTS[self.name]}",
|
140 |
-
headers={
|
141 |
-
"accept": "application/json",
|
142 |
-
"x-key": self.api_key,
|
143 |
-
"Content-Type": "application/json",
|
144 |
-
},
|
145 |
-
json=self.request_json,
|
146 |
-
)
|
147 |
-
result = response.json()
|
148 |
-
if response.status_code != 200:
|
149 |
-
raise ApiException(status_code=response.status_code, detail=result.get("detail"))
|
150 |
-
self.request_id = response.json()["id"]
|
151 |
-
|
152 |
-
def retrieve(self) -> dict:
|
153 |
-
"""
|
154 |
-
Wait for the generation to finish and retrieve response.
|
155 |
-
"""
|
156 |
-
if self.request_id is None:
|
157 |
-
self.request()
|
158 |
-
while self.result is None:
|
159 |
-
response = requests.get(
|
160 |
-
f"{API_URL}/v1/get_result",
|
161 |
-
headers={
|
162 |
-
"accept": "application/json",
|
163 |
-
"x-key": self.api_key,
|
164 |
-
},
|
165 |
-
params={
|
166 |
-
"id": self.request_id,
|
167 |
-
},
|
168 |
-
)
|
169 |
-
result = response.json()
|
170 |
-
if "status" not in result:
|
171 |
-
raise ApiException(status_code=response.status_code, detail=result.get("detail"))
|
172 |
-
elif result["status"] == "Ready":
|
173 |
-
self.result = result["result"]
|
174 |
-
elif result["status"] == "Pending":
|
175 |
-
time.sleep(0.5)
|
176 |
-
else:
|
177 |
-
raise ApiException(status_code=200, detail=f"API returned status '{result['status']}'")
|
178 |
-
return self.result
|
179 |
-
|
180 |
-
@property
|
181 |
-
def bytes(self) -> bytes:
|
182 |
-
"""
|
183 |
-
Generated image as bytes.
|
184 |
-
"""
|
185 |
-
if self._image_bytes is None:
|
186 |
-
response = requests.get(self.url)
|
187 |
-
if response.status_code == 200:
|
188 |
-
self._image_bytes = response.content
|
189 |
-
else:
|
190 |
-
raise ApiException(status_code=response.status_code)
|
191 |
-
return self._image_bytes
|
192 |
-
|
193 |
-
@property
|
194 |
-
def url(self) -> str:
|
195 |
-
"""
|
196 |
-
Public url to retrieve the image from
|
197 |
-
"""
|
198 |
-
if self._url is None:
|
199 |
-
result = self.retrieve()
|
200 |
-
self._url = result["sample"]
|
201 |
-
return self._url
|
202 |
-
|
203 |
-
@property
|
204 |
-
def image(self) -> Image.Image:
|
205 |
-
"""
|
206 |
-
Load the image as a PIL Image
|
207 |
-
"""
|
208 |
-
return Image.open(io.BytesIO(self.bytes))
|
209 |
-
|
210 |
-
def save(self, path: str):
|
211 |
-
"""
|
212 |
-
Save the generated image to a local path
|
213 |
-
"""
|
214 |
-
suffix = Path(self.url).suffix
|
215 |
-
if not path.endswith(suffix):
|
216 |
-
path = path + suffix
|
217 |
-
Path(path).resolve().parent.mkdir(parents=True, exist_ok=True)
|
218 |
-
with open(path, "wb") as file:
|
219 |
-
file.write(self.bytes)
|
220 |
-
|
221 |
-
|
222 |
-
if __name__ == "__main__":
|
223 |
-
from fire import Fire
|
224 |
-
|
225 |
-
Fire(ImageRequest)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/cli.py
DELETED
@@ -1,238 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import time
|
4 |
-
from dataclasses import dataclass
|
5 |
-
from glob import iglob
|
6 |
-
|
7 |
-
import torch
|
8 |
-
from fire import Fire
|
9 |
-
from transformers import pipeline
|
10 |
-
|
11 |
-
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
|
12 |
-
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image
|
13 |
-
|
14 |
-
NSFW_THRESHOLD = 0.85
|
15 |
-
|
16 |
-
|
17 |
-
@dataclass
|
18 |
-
class SamplingOptions:
|
19 |
-
prompt: str
|
20 |
-
width: int
|
21 |
-
height: int
|
22 |
-
num_steps: int
|
23 |
-
guidance: float
|
24 |
-
seed: int | None
|
25 |
-
|
26 |
-
|
27 |
-
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
|
28 |
-
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
|
29 |
-
usage = (
|
30 |
-
"Usage: Either write your prompt directly, leave this field empty "
|
31 |
-
"to repeat the prompt or write a command starting with a slash:\n"
|
32 |
-
"- '/w <width>' will set the width of the generated image\n"
|
33 |
-
"- '/h <height>' will set the height of the generated image\n"
|
34 |
-
"- '/s <seed>' sets the next seed\n"
|
35 |
-
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
|
36 |
-
"- '/n <steps>' sets the number of steps\n"
|
37 |
-
"- '/q' to quit"
|
38 |
-
)
|
39 |
-
|
40 |
-
while (prompt := input(user_question)).startswith("/"):
|
41 |
-
if prompt.startswith("/w"):
|
42 |
-
if prompt.count(" ") != 1:
|
43 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
44 |
-
continue
|
45 |
-
_, width = prompt.split()
|
46 |
-
options.width = 16 * (int(width) // 16)
|
47 |
-
print(
|
48 |
-
f"Setting resolution to {options.width} x {options.height} "
|
49 |
-
f"({options.height *options.width/1e6:.2f}MP)"
|
50 |
-
)
|
51 |
-
elif prompt.startswith("/h"):
|
52 |
-
if prompt.count(" ") != 1:
|
53 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
54 |
-
continue
|
55 |
-
_, height = prompt.split()
|
56 |
-
options.height = 16 * (int(height) // 16)
|
57 |
-
print(
|
58 |
-
f"Setting resolution to {options.width} x {options.height} "
|
59 |
-
f"({options.height *options.width/1e6:.2f}MP)"
|
60 |
-
)
|
61 |
-
elif prompt.startswith("/g"):
|
62 |
-
if prompt.count(" ") != 1:
|
63 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
64 |
-
continue
|
65 |
-
_, guidance = prompt.split()
|
66 |
-
options.guidance = float(guidance)
|
67 |
-
print(f"Setting guidance to {options.guidance}")
|
68 |
-
elif prompt.startswith("/s"):
|
69 |
-
if prompt.count(" ") != 1:
|
70 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
71 |
-
continue
|
72 |
-
_, seed = prompt.split()
|
73 |
-
options.seed = int(seed)
|
74 |
-
print(f"Setting seed to {options.seed}")
|
75 |
-
elif prompt.startswith("/n"):
|
76 |
-
if prompt.count(" ") != 1:
|
77 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
78 |
-
continue
|
79 |
-
_, steps = prompt.split()
|
80 |
-
options.num_steps = int(steps)
|
81 |
-
print(f"Setting number of steps to {options.num_steps}")
|
82 |
-
elif prompt.startswith("/q"):
|
83 |
-
print("Quitting")
|
84 |
-
return None
|
85 |
-
else:
|
86 |
-
if not prompt.startswith("/h"):
|
87 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
88 |
-
print(usage)
|
89 |
-
if prompt != "":
|
90 |
-
options.prompt = prompt
|
91 |
-
return options
|
92 |
-
|
93 |
-
|
94 |
-
@torch.inference_mode()
|
95 |
-
def main(
|
96 |
-
name: str = "flux-schnell",
|
97 |
-
width: int = 1360,
|
98 |
-
height: int = 768,
|
99 |
-
seed: int | None = None,
|
100 |
-
prompt: str = (
|
101 |
-
"a photo of a forest with mist swirling around the tree trunks. The word "
|
102 |
-
'"FLUX" is painted over it in big, red brush strokes with visible texture'
|
103 |
-
),
|
104 |
-
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
105 |
-
num_steps: int | None = None,
|
106 |
-
loop: bool = False,
|
107 |
-
guidance: float = 3.5,
|
108 |
-
offload: bool = False,
|
109 |
-
output_dir: str = "output",
|
110 |
-
add_sampling_metadata: bool = True,
|
111 |
-
):
|
112 |
-
"""
|
113 |
-
Sample the flux model. Either interactively (set `--loop`) or run for a
|
114 |
-
single image.
|
115 |
-
|
116 |
-
Args:
|
117 |
-
name: Name of the model to load
|
118 |
-
height: height of the sample in pixels (should be a multiple of 16)
|
119 |
-
width: width of the sample in pixels (should be a multiple of 16)
|
120 |
-
seed: Set a seed for sampling
|
121 |
-
output_name: where to save the output image, `{idx}` will be replaced
|
122 |
-
by the index of the sample
|
123 |
-
prompt: Prompt used for sampling
|
124 |
-
device: Pytorch device
|
125 |
-
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
|
126 |
-
loop: start an interactive session and sample multiple times
|
127 |
-
guidance: guidance value used for guidance distillation
|
128 |
-
add_sampling_metadata: Add the prompt to the image Exif metadata
|
129 |
-
"""
|
130 |
-
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
|
131 |
-
|
132 |
-
if name not in configs:
|
133 |
-
available = ", ".join(configs.keys())
|
134 |
-
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
135 |
-
|
136 |
-
torch_device = torch.device(device)
|
137 |
-
if num_steps is None:
|
138 |
-
num_steps = 4 if name == "flux-schnell" else 50
|
139 |
-
|
140 |
-
# allow for packing and conversion to latent space
|
141 |
-
height = 16 * (height // 16)
|
142 |
-
width = 16 * (width // 16)
|
143 |
-
|
144 |
-
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
145 |
-
if not os.path.exists(output_dir):
|
146 |
-
os.makedirs(output_dir)
|
147 |
-
idx = 0
|
148 |
-
else:
|
149 |
-
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
|
150 |
-
if len(fns) > 0:
|
151 |
-
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
152 |
-
else:
|
153 |
-
idx = 0
|
154 |
-
|
155 |
-
# init all components
|
156 |
-
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
|
157 |
-
clip = load_clip(torch_device)
|
158 |
-
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
159 |
-
ae = load_ae(name, device="cpu" if offload else torch_device)
|
160 |
-
|
161 |
-
rng = torch.Generator(device="cpu")
|
162 |
-
opts = SamplingOptions(
|
163 |
-
prompt=prompt,
|
164 |
-
width=width,
|
165 |
-
height=height,
|
166 |
-
num_steps=num_steps,
|
167 |
-
guidance=guidance,
|
168 |
-
seed=seed,
|
169 |
-
)
|
170 |
-
|
171 |
-
if loop:
|
172 |
-
opts = parse_prompt(opts)
|
173 |
-
|
174 |
-
while opts is not None:
|
175 |
-
if opts.seed is None:
|
176 |
-
opts.seed = rng.seed()
|
177 |
-
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
|
178 |
-
t0 = time.perf_counter()
|
179 |
-
|
180 |
-
# prepare input
|
181 |
-
x = get_noise(
|
182 |
-
1,
|
183 |
-
opts.height,
|
184 |
-
opts.width,
|
185 |
-
device=torch_device,
|
186 |
-
dtype=torch.bfloat16,
|
187 |
-
seed=opts.seed,
|
188 |
-
)
|
189 |
-
opts.seed = None
|
190 |
-
if offload:
|
191 |
-
ae = ae.cpu()
|
192 |
-
torch.cuda.empty_cache()
|
193 |
-
t5, clip = t5.to(torch_device), clip.to(torch_device)
|
194 |
-
inp = prepare(t5, clip, x, prompt=opts.prompt)
|
195 |
-
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
196 |
-
|
197 |
-
# offload TEs to CPU, load model to gpu
|
198 |
-
if offload:
|
199 |
-
t5, clip = t5.cpu(), clip.cpu()
|
200 |
-
torch.cuda.empty_cache()
|
201 |
-
model = model.to(torch_device)
|
202 |
-
|
203 |
-
# denoise initial noise
|
204 |
-
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
|
205 |
-
|
206 |
-
# offload model, load autoencoder to gpu
|
207 |
-
if offload:
|
208 |
-
model.cpu()
|
209 |
-
torch.cuda.empty_cache()
|
210 |
-
ae.decoder.to(x.device)
|
211 |
-
|
212 |
-
# decode latents to pixel space
|
213 |
-
x = unpack(x.float(), opts.height, opts.width)
|
214 |
-
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
215 |
-
x = ae.decode(x)
|
216 |
-
|
217 |
-
if torch.cuda.is_available():
|
218 |
-
torch.cuda.synchronize()
|
219 |
-
t1 = time.perf_counter()
|
220 |
-
|
221 |
-
fn = output_name.format(idx=idx)
|
222 |
-
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
|
223 |
-
|
224 |
-
idx = save_image(nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt)
|
225 |
-
|
226 |
-
if loop:
|
227 |
-
print("-" * 80)
|
228 |
-
opts = parse_prompt(opts)
|
229 |
-
else:
|
230 |
-
opts = None
|
231 |
-
|
232 |
-
|
233 |
-
def app():
|
234 |
-
Fire(main)
|
235 |
-
|
236 |
-
|
237 |
-
if __name__ == "__main__":
|
238 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/cli_control.py
DELETED
@@ -1,347 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import time
|
4 |
-
from dataclasses import dataclass
|
5 |
-
from glob import iglob
|
6 |
-
|
7 |
-
import torch
|
8 |
-
from fire import Fire
|
9 |
-
from transformers import pipeline
|
10 |
-
|
11 |
-
from flux.modules.image_embedders import CannyImageEncoder, DepthImageEncoder
|
12 |
-
from flux.sampling import denoise, get_noise, get_schedule, prepare_control, unpack
|
13 |
-
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image
|
14 |
-
|
15 |
-
|
16 |
-
@dataclass
|
17 |
-
class SamplingOptions:
|
18 |
-
prompt: str
|
19 |
-
width: int
|
20 |
-
height: int
|
21 |
-
num_steps: int
|
22 |
-
guidance: float
|
23 |
-
seed: int | None
|
24 |
-
img_cond_path: str
|
25 |
-
lora_scale: float | None
|
26 |
-
|
27 |
-
|
28 |
-
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
|
29 |
-
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
|
30 |
-
usage = (
|
31 |
-
"Usage: Either write your prompt directly, leave this field empty "
|
32 |
-
"to repeat the prompt or write a command starting with a slash:\n"
|
33 |
-
"- '/w <width>' will set the width of the generated image\n"
|
34 |
-
"- '/h <height>' will set the height of the generated image\n"
|
35 |
-
"- '/s <seed>' sets the next seed\n"
|
36 |
-
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
|
37 |
-
"- '/n <steps>' sets the number of steps\n"
|
38 |
-
"- '/q' to quit"
|
39 |
-
)
|
40 |
-
|
41 |
-
while (prompt := input(user_question)).startswith("/"):
|
42 |
-
if prompt.startswith("/w"):
|
43 |
-
if prompt.count(" ") != 1:
|
44 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
45 |
-
continue
|
46 |
-
_, width = prompt.split()
|
47 |
-
options.width = 16 * (int(width) // 16)
|
48 |
-
print(
|
49 |
-
f"Setting resolution to {options.width} x {options.height} "
|
50 |
-
f"({options.height *options.width/1e6:.2f}MP)"
|
51 |
-
)
|
52 |
-
elif prompt.startswith("/h"):
|
53 |
-
if prompt.count(" ") != 1:
|
54 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
55 |
-
continue
|
56 |
-
_, height = prompt.split()
|
57 |
-
options.height = 16 * (int(height) // 16)
|
58 |
-
print(
|
59 |
-
f"Setting resolution to {options.width} x {options.height} "
|
60 |
-
f"({options.height *options.width/1e6:.2f}MP)"
|
61 |
-
)
|
62 |
-
elif prompt.startswith("/g"):
|
63 |
-
if prompt.count(" ") != 1:
|
64 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
65 |
-
continue
|
66 |
-
_, guidance = prompt.split()
|
67 |
-
options.guidance = float(guidance)
|
68 |
-
print(f"Setting guidance to {options.guidance}")
|
69 |
-
elif prompt.startswith("/s"):
|
70 |
-
if prompt.count(" ") != 1:
|
71 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
72 |
-
continue
|
73 |
-
_, seed = prompt.split()
|
74 |
-
options.seed = int(seed)
|
75 |
-
print(f"Setting seed to {options.seed}")
|
76 |
-
elif prompt.startswith("/n"):
|
77 |
-
if prompt.count(" ") != 1:
|
78 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
79 |
-
continue
|
80 |
-
_, steps = prompt.split()
|
81 |
-
options.num_steps = int(steps)
|
82 |
-
print(f"Setting number of steps to {options.num_steps}")
|
83 |
-
elif prompt.startswith("/q"):
|
84 |
-
print("Quitting")
|
85 |
-
return None
|
86 |
-
else:
|
87 |
-
if not prompt.startswith("/h"):
|
88 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
89 |
-
print(usage)
|
90 |
-
if prompt != "":
|
91 |
-
options.prompt = prompt
|
92 |
-
return options
|
93 |
-
|
94 |
-
|
95 |
-
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
|
96 |
-
if options is None:
|
97 |
-
return None
|
98 |
-
|
99 |
-
user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
|
100 |
-
usage = (
|
101 |
-
"Usage: Either write your prompt directly, leave this field empty "
|
102 |
-
"to repeat the conditioning image or write a command starting with a slash:\n"
|
103 |
-
"- '/q' to quit"
|
104 |
-
)
|
105 |
-
|
106 |
-
while True:
|
107 |
-
img_cond_path = input(user_question)
|
108 |
-
|
109 |
-
if img_cond_path.startswith("/"):
|
110 |
-
if img_cond_path.startswith("/q"):
|
111 |
-
print("Quitting")
|
112 |
-
return None
|
113 |
-
else:
|
114 |
-
if not img_cond_path.startswith("/h"):
|
115 |
-
print(f"Got invalid command '{img_cond_path}'\n{usage}")
|
116 |
-
print(usage)
|
117 |
-
continue
|
118 |
-
|
119 |
-
if img_cond_path == "":
|
120 |
-
break
|
121 |
-
|
122 |
-
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
|
123 |
-
(".jpg", ".jpeg", ".png", ".webp")
|
124 |
-
):
|
125 |
-
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
|
126 |
-
continue
|
127 |
-
|
128 |
-
options.img_cond_path = img_cond_path
|
129 |
-
break
|
130 |
-
|
131 |
-
return options
|
132 |
-
|
133 |
-
|
134 |
-
def parse_lora_scale(options: SamplingOptions | None) -> tuple[SamplingOptions | None, bool]:
|
135 |
-
changed = False
|
136 |
-
|
137 |
-
if options is None:
|
138 |
-
return None, changed
|
139 |
-
|
140 |
-
user_question = "Next lora scale (write /h for help, /q to quit and leave empty to repeat):\n"
|
141 |
-
usage = (
|
142 |
-
"Usage: Either write your prompt directly, leave this field empty "
|
143 |
-
"to repeat the lora scale or write a command starting with a slash:\n"
|
144 |
-
"- '/q' to quit"
|
145 |
-
)
|
146 |
-
|
147 |
-
while (prompt := input(user_question)).startswith("/"):
|
148 |
-
if prompt.startswith("/q"):
|
149 |
-
print("Quitting")
|
150 |
-
return None, changed
|
151 |
-
else:
|
152 |
-
if not prompt.startswith("/h"):
|
153 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
154 |
-
print(usage)
|
155 |
-
if prompt != "":
|
156 |
-
options.lora_scale = float(prompt)
|
157 |
-
changed = True
|
158 |
-
return options, changed
|
159 |
-
|
160 |
-
|
161 |
-
@torch.inference_mode()
|
162 |
-
def main(
|
163 |
-
name: str,
|
164 |
-
width: int = 1024,
|
165 |
-
height: int = 1024,
|
166 |
-
seed: int | None = None,
|
167 |
-
prompt: str = "a robot made out of gold",
|
168 |
-
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
169 |
-
num_steps: int = 50,
|
170 |
-
loop: bool = False,
|
171 |
-
guidance: float | None = None,
|
172 |
-
offload: bool = False,
|
173 |
-
output_dir: str = "output",
|
174 |
-
add_sampling_metadata: bool = True,
|
175 |
-
img_cond_path: str = "assets/robot.webp",
|
176 |
-
lora_scale: float | None = 0.85,
|
177 |
-
):
|
178 |
-
"""
|
179 |
-
Sample the flux model. Either interactively (set `--loop`) or run for a
|
180 |
-
single image.
|
181 |
-
|
182 |
-
Args:
|
183 |
-
height: height of the sample in pixels (should be a multiple of 16)
|
184 |
-
width: width of the sample in pixels (should be a multiple of 16)
|
185 |
-
seed: Set a seed for sampling
|
186 |
-
output_name: where to save the output image, `{idx}` will be replaced
|
187 |
-
by the index of the sample
|
188 |
-
prompt: Prompt used for sampling
|
189 |
-
device: Pytorch device
|
190 |
-
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
|
191 |
-
loop: start an interactive session and sample multiple times
|
192 |
-
guidance: guidance value used for guidance distillation
|
193 |
-
add_sampling_metadata: Add the prompt to the image Exif metadata
|
194 |
-
img_cond_path: path to conditioning image (jpeg/png/webp)
|
195 |
-
"""
|
196 |
-
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
|
197 |
-
|
198 |
-
assert name in [
|
199 |
-
"flux-dev-canny",
|
200 |
-
"flux-dev-depth",
|
201 |
-
"flux-dev-canny-lora",
|
202 |
-
"flux-dev-depth-lora",
|
203 |
-
], f"Got unknown model name: {name}"
|
204 |
-
if guidance is None:
|
205 |
-
if name in ["flux-dev-canny", "flux-dev-canny-lora"]:
|
206 |
-
guidance = 30.0
|
207 |
-
elif name in ["flux-dev-depth", "flux-dev-depth-lora"]:
|
208 |
-
guidance = 10.0
|
209 |
-
else:
|
210 |
-
raise NotImplementedError()
|
211 |
-
|
212 |
-
if name not in configs:
|
213 |
-
available = ", ".join(configs.keys())
|
214 |
-
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
215 |
-
|
216 |
-
torch_device = torch.device(device)
|
217 |
-
|
218 |
-
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
219 |
-
if not os.path.exists(output_dir):
|
220 |
-
os.makedirs(output_dir)
|
221 |
-
idx = 0
|
222 |
-
else:
|
223 |
-
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
|
224 |
-
if len(fns) > 0:
|
225 |
-
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
226 |
-
else:
|
227 |
-
idx = 0
|
228 |
-
|
229 |
-
# init all components
|
230 |
-
t5 = load_t5(torch_device, max_length=512)
|
231 |
-
clip = load_clip(torch_device)
|
232 |
-
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
233 |
-
ae = load_ae(name, device="cpu" if offload else torch_device)
|
234 |
-
|
235 |
-
# set lora scale
|
236 |
-
if "lora" in name and lora_scale is not None:
|
237 |
-
for _, module in model.named_modules():
|
238 |
-
if hasattr(module, "set_scale"):
|
239 |
-
module.set_scale(lora_scale)
|
240 |
-
|
241 |
-
if name in ["flux-dev-depth", "flux-dev-depth-lora"]:
|
242 |
-
img_embedder = DepthImageEncoder(torch_device)
|
243 |
-
elif name in ["flux-dev-canny", "flux-dev-canny-lora"]:
|
244 |
-
img_embedder = CannyImageEncoder(torch_device)
|
245 |
-
else:
|
246 |
-
raise NotImplementedError()
|
247 |
-
|
248 |
-
rng = torch.Generator(device="cpu")
|
249 |
-
opts = SamplingOptions(
|
250 |
-
prompt=prompt,
|
251 |
-
width=width,
|
252 |
-
height=height,
|
253 |
-
num_steps=num_steps,
|
254 |
-
guidance=guidance,
|
255 |
-
seed=seed,
|
256 |
-
img_cond_path=img_cond_path,
|
257 |
-
lora_scale=lora_scale,
|
258 |
-
)
|
259 |
-
|
260 |
-
if loop:
|
261 |
-
opts = parse_prompt(opts)
|
262 |
-
opts = parse_img_cond_path(opts)
|
263 |
-
if "lora" in name:
|
264 |
-
opts, changed = parse_lora_scale(opts)
|
265 |
-
if changed:
|
266 |
-
# update the lora scale:
|
267 |
-
for _, module in model.named_modules():
|
268 |
-
if hasattr(module, "set_scale"):
|
269 |
-
module.set_scale(opts.lora_scale)
|
270 |
-
|
271 |
-
while opts is not None:
|
272 |
-
if opts.seed is None:
|
273 |
-
opts.seed = rng.seed()
|
274 |
-
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
|
275 |
-
t0 = time.perf_counter()
|
276 |
-
|
277 |
-
# prepare input
|
278 |
-
x = get_noise(
|
279 |
-
1,
|
280 |
-
opts.height,
|
281 |
-
opts.width,
|
282 |
-
device=torch_device,
|
283 |
-
dtype=torch.bfloat16,
|
284 |
-
seed=opts.seed,
|
285 |
-
)
|
286 |
-
opts.seed = None
|
287 |
-
if offload:
|
288 |
-
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
|
289 |
-
inp = prepare_control(
|
290 |
-
t5,
|
291 |
-
clip,
|
292 |
-
x,
|
293 |
-
prompt=opts.prompt,
|
294 |
-
ae=ae,
|
295 |
-
encoder=img_embedder,
|
296 |
-
img_cond_path=opts.img_cond_path,
|
297 |
-
)
|
298 |
-
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
299 |
-
|
300 |
-
# offload TEs and AE to CPU, load model to gpu
|
301 |
-
if offload:
|
302 |
-
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
|
303 |
-
torch.cuda.empty_cache()
|
304 |
-
model = model.to(torch_device)
|
305 |
-
|
306 |
-
# denoise initial noise
|
307 |
-
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
|
308 |
-
|
309 |
-
# offload model, load autoencoder to gpu
|
310 |
-
if offload:
|
311 |
-
model.cpu()
|
312 |
-
torch.cuda.empty_cache()
|
313 |
-
ae.decoder.to(x.device)
|
314 |
-
|
315 |
-
# decode latents to pixel space
|
316 |
-
x = unpack(x.float(), opts.height, opts.width)
|
317 |
-
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
318 |
-
x = ae.decode(x)
|
319 |
-
|
320 |
-
if torch.cuda.is_available():
|
321 |
-
torch.cuda.synchronize()
|
322 |
-
t1 = time.perf_counter()
|
323 |
-
print(f"Done in {t1 - t0:.1f}s")
|
324 |
-
|
325 |
-
idx = save_image(nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt)
|
326 |
-
|
327 |
-
if loop:
|
328 |
-
print("-" * 80)
|
329 |
-
opts = parse_prompt(opts)
|
330 |
-
opts = parse_img_cond_path(opts)
|
331 |
-
if "lora" in name:
|
332 |
-
opts, changed = parse_lora_scale(opts)
|
333 |
-
if changed:
|
334 |
-
# update the lora scale:
|
335 |
-
for _, module in model.named_modules():
|
336 |
-
if hasattr(module, "set_scale"):
|
337 |
-
module.set_scale(opts.lora_scale)
|
338 |
-
else:
|
339 |
-
opts = None
|
340 |
-
|
341 |
-
|
342 |
-
def app():
|
343 |
-
Fire(main)
|
344 |
-
|
345 |
-
|
346 |
-
if __name__ == "__main__":
|
347 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/cli_fill.py
DELETED
@@ -1,334 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import time
|
4 |
-
from dataclasses import dataclass
|
5 |
-
from glob import iglob
|
6 |
-
|
7 |
-
import torch
|
8 |
-
from fire import Fire
|
9 |
-
from PIL import Image
|
10 |
-
from transformers import pipeline
|
11 |
-
|
12 |
-
from flux.sampling import denoise, get_noise, get_schedule, prepare_fill, unpack
|
13 |
-
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image
|
14 |
-
|
15 |
-
|
16 |
-
@dataclass
|
17 |
-
class SamplingOptions:
|
18 |
-
prompt: str
|
19 |
-
width: int
|
20 |
-
height: int
|
21 |
-
num_steps: int
|
22 |
-
guidance: float
|
23 |
-
seed: int | None
|
24 |
-
img_cond_path: str
|
25 |
-
img_mask_path: str
|
26 |
-
|
27 |
-
|
28 |
-
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
|
29 |
-
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
|
30 |
-
usage = (
|
31 |
-
"Usage: Either write your prompt directly, leave this field empty "
|
32 |
-
"to repeat the prompt or write a command starting with a slash:\n"
|
33 |
-
"- '/s <seed>' sets the next seed\n"
|
34 |
-
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
|
35 |
-
"- '/n <steps>' sets the number of steps\n"
|
36 |
-
"- '/q' to quit"
|
37 |
-
)
|
38 |
-
|
39 |
-
while (prompt := input(user_question)).startswith("/"):
|
40 |
-
if prompt.startswith("/g"):
|
41 |
-
if prompt.count(" ") != 1:
|
42 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
43 |
-
continue
|
44 |
-
_, guidance = prompt.split()
|
45 |
-
options.guidance = float(guidance)
|
46 |
-
print(f"Setting guidance to {options.guidance}")
|
47 |
-
elif prompt.startswith("/s"):
|
48 |
-
if prompt.count(" ") != 1:
|
49 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
50 |
-
continue
|
51 |
-
_, seed = prompt.split()
|
52 |
-
options.seed = int(seed)
|
53 |
-
print(f"Setting seed to {options.seed}")
|
54 |
-
elif prompt.startswith("/n"):
|
55 |
-
if prompt.count(" ") != 1:
|
56 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
57 |
-
continue
|
58 |
-
_, steps = prompt.split()
|
59 |
-
options.num_steps = int(steps)
|
60 |
-
print(f"Setting number of steps to {options.num_steps}")
|
61 |
-
elif prompt.startswith("/q"):
|
62 |
-
print("Quitting")
|
63 |
-
return None
|
64 |
-
else:
|
65 |
-
if not prompt.startswith("/h"):
|
66 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
67 |
-
print(usage)
|
68 |
-
if prompt != "":
|
69 |
-
options.prompt = prompt
|
70 |
-
return options
|
71 |
-
|
72 |
-
|
73 |
-
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
|
74 |
-
if options is None:
|
75 |
-
return None
|
76 |
-
|
77 |
-
user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
|
78 |
-
usage = (
|
79 |
-
"Usage: Either write your prompt directly, leave this field empty "
|
80 |
-
"to repeat the conditioning image or write a command starting with a slash:\n"
|
81 |
-
"- '/q' to quit"
|
82 |
-
)
|
83 |
-
|
84 |
-
while True:
|
85 |
-
img_cond_path = input(user_question)
|
86 |
-
|
87 |
-
if img_cond_path.startswith("/"):
|
88 |
-
if img_cond_path.startswith("/q"):
|
89 |
-
print("Quitting")
|
90 |
-
return None
|
91 |
-
else:
|
92 |
-
if not img_cond_path.startswith("/h"):
|
93 |
-
print(f"Got invalid command '{img_cond_path}'\n{usage}")
|
94 |
-
print(usage)
|
95 |
-
continue
|
96 |
-
|
97 |
-
if img_cond_path == "":
|
98 |
-
break
|
99 |
-
|
100 |
-
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
|
101 |
-
(".jpg", ".jpeg", ".png", ".webp")
|
102 |
-
):
|
103 |
-
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
|
104 |
-
continue
|
105 |
-
else:
|
106 |
-
with Image.open(img_cond_path) as img:
|
107 |
-
width, height = img.size
|
108 |
-
|
109 |
-
if width % 32 != 0 or height % 32 != 0:
|
110 |
-
print(f"Image dimensions must be divisible by 32, got {width}x{height}")
|
111 |
-
continue
|
112 |
-
|
113 |
-
options.img_cond_path = img_cond_path
|
114 |
-
break
|
115 |
-
|
116 |
-
return options
|
117 |
-
|
118 |
-
|
119 |
-
def parse_img_mask_path(options: SamplingOptions | None) -> SamplingOptions | None:
|
120 |
-
if options is None:
|
121 |
-
return None
|
122 |
-
|
123 |
-
user_question = "Next conditioning mask (write /h for help, /q to quit and leave empty to repeat):\n"
|
124 |
-
usage = (
|
125 |
-
"Usage: Either write your prompt directly, leave this field empty "
|
126 |
-
"to repeat the conditioning mask or write a command starting with a slash:\n"
|
127 |
-
"- '/q' to quit"
|
128 |
-
)
|
129 |
-
|
130 |
-
while True:
|
131 |
-
img_mask_path = input(user_question)
|
132 |
-
|
133 |
-
if img_mask_path.startswith("/"):
|
134 |
-
if img_mask_path.startswith("/q"):
|
135 |
-
print("Quitting")
|
136 |
-
return None
|
137 |
-
else:
|
138 |
-
if not img_mask_path.startswith("/h"):
|
139 |
-
print(f"Got invalid command '{img_mask_path}'\n{usage}")
|
140 |
-
print(usage)
|
141 |
-
continue
|
142 |
-
|
143 |
-
if img_mask_path == "":
|
144 |
-
break
|
145 |
-
|
146 |
-
if not os.path.isfile(img_mask_path) or not img_mask_path.lower().endswith(
|
147 |
-
(".jpg", ".jpeg", ".png", ".webp")
|
148 |
-
):
|
149 |
-
print(f"File '{img_mask_path}' does not exist or is not a valid image file")
|
150 |
-
continue
|
151 |
-
else:
|
152 |
-
with Image.open(img_mask_path) as img:
|
153 |
-
width, height = img.size
|
154 |
-
|
155 |
-
if width % 32 != 0 or height % 32 != 0:
|
156 |
-
print(f"Image dimensions must be divisible by 32, got {width}x{height}")
|
157 |
-
continue
|
158 |
-
else:
|
159 |
-
with Image.open(options.img_cond_path) as img_cond:
|
160 |
-
img_cond_width, img_cond_height = img_cond.size
|
161 |
-
|
162 |
-
if width != img_cond_width or height != img_cond_height:
|
163 |
-
print(
|
164 |
-
f"Mask dimensions must match conditioning image, got {width}x{height} and {img_cond_width}x{img_cond_height}"
|
165 |
-
)
|
166 |
-
continue
|
167 |
-
|
168 |
-
options.img_mask_path = img_mask_path
|
169 |
-
break
|
170 |
-
|
171 |
-
return options
|
172 |
-
|
173 |
-
|
174 |
-
@torch.inference_mode()
|
175 |
-
def main(
|
176 |
-
seed: int | None = None,
|
177 |
-
prompt: str = "a white paper cup",
|
178 |
-
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
179 |
-
num_steps: int = 50,
|
180 |
-
loop: bool = False,
|
181 |
-
guidance: float = 30.0,
|
182 |
-
offload: bool = False,
|
183 |
-
output_dir: str = "output",
|
184 |
-
add_sampling_metadata: bool = True,
|
185 |
-
img_cond_path: str = "assets/cup.png",
|
186 |
-
img_mask_path: str = "assets/cup_mask.png",
|
187 |
-
):
|
188 |
-
"""
|
189 |
-
Sample the flux model. Either interactively (set `--loop`) or run for a
|
190 |
-
single image. This demo assumes that the conditioning image and mask have
|
191 |
-
the same shape and that height and width are divisible by 32.
|
192 |
-
|
193 |
-
Args:
|
194 |
-
seed: Set a seed for sampling
|
195 |
-
output_name: where to save the output image, `{idx}` will be replaced
|
196 |
-
by the index of the sample
|
197 |
-
prompt: Prompt used for sampling
|
198 |
-
device: Pytorch device
|
199 |
-
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
|
200 |
-
loop: start an interactive session and sample multiple times
|
201 |
-
guidance: guidance value used for guidance distillation
|
202 |
-
add_sampling_metadata: Add the prompt to the image Exif metadata
|
203 |
-
img_cond_path: path to conditioning image (jpeg/png/webp)
|
204 |
-
img_mask_path: path to conditioning mask (jpeg/png/webp
|
205 |
-
"""
|
206 |
-
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
|
207 |
-
|
208 |
-
name = "flux-dev-fill"
|
209 |
-
if name not in configs:
|
210 |
-
available = ", ".join(configs.keys())
|
211 |
-
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
212 |
-
|
213 |
-
torch_device = torch.device(device)
|
214 |
-
|
215 |
-
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
216 |
-
if not os.path.exists(output_dir):
|
217 |
-
os.makedirs(output_dir)
|
218 |
-
idx = 0
|
219 |
-
else:
|
220 |
-
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
|
221 |
-
if len(fns) > 0:
|
222 |
-
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
223 |
-
else:
|
224 |
-
idx = 0
|
225 |
-
|
226 |
-
# init all components
|
227 |
-
t5 = load_t5(torch_device, max_length=128)
|
228 |
-
clip = load_clip(torch_device)
|
229 |
-
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
230 |
-
ae = load_ae(name, device="cpu" if offload else torch_device)
|
231 |
-
|
232 |
-
rng = torch.Generator(device="cpu")
|
233 |
-
with Image.open(img_cond_path) as img:
|
234 |
-
width, height = img.size
|
235 |
-
opts = SamplingOptions(
|
236 |
-
prompt=prompt,
|
237 |
-
width=width,
|
238 |
-
height=height,
|
239 |
-
num_steps=num_steps,
|
240 |
-
guidance=guidance,
|
241 |
-
seed=seed,
|
242 |
-
img_cond_path=img_cond_path,
|
243 |
-
img_mask_path=img_mask_path,
|
244 |
-
)
|
245 |
-
|
246 |
-
if loop:
|
247 |
-
opts = parse_prompt(opts)
|
248 |
-
opts = parse_img_cond_path(opts)
|
249 |
-
|
250 |
-
with Image.open(opts.img_cond_path) as img:
|
251 |
-
width, height = img.size
|
252 |
-
opts.height = height
|
253 |
-
opts.width = width
|
254 |
-
|
255 |
-
opts = parse_img_mask_path(opts)
|
256 |
-
|
257 |
-
while opts is not None:
|
258 |
-
if opts.seed is None:
|
259 |
-
opts.seed = rng.seed()
|
260 |
-
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
|
261 |
-
t0 = time.perf_counter()
|
262 |
-
|
263 |
-
# prepare input
|
264 |
-
x = get_noise(
|
265 |
-
1,
|
266 |
-
opts.height,
|
267 |
-
opts.width,
|
268 |
-
device=torch_device,
|
269 |
-
dtype=torch.bfloat16,
|
270 |
-
seed=opts.seed,
|
271 |
-
)
|
272 |
-
opts.seed = None
|
273 |
-
if offload:
|
274 |
-
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch.device)
|
275 |
-
inp = prepare_fill(
|
276 |
-
t5,
|
277 |
-
clip,
|
278 |
-
x,
|
279 |
-
prompt=opts.prompt,
|
280 |
-
ae=ae,
|
281 |
-
img_cond_path=opts.img_cond_path,
|
282 |
-
mask_path=opts.img_mask_path,
|
283 |
-
)
|
284 |
-
|
285 |
-
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
286 |
-
|
287 |
-
# offload TEs and AE to CPU, load model to gpu
|
288 |
-
if offload:
|
289 |
-
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
|
290 |
-
torch.cuda.empty_cache()
|
291 |
-
model = model.to(torch_device)
|
292 |
-
|
293 |
-
# denoise initial noise
|
294 |
-
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
|
295 |
-
|
296 |
-
# offload model, load autoencoder to gpu
|
297 |
-
if offload:
|
298 |
-
model.cpu()
|
299 |
-
torch.cuda.empty_cache()
|
300 |
-
ae.decoder.to(x.device)
|
301 |
-
|
302 |
-
# decode latents to pixel space
|
303 |
-
x = unpack(x.float(), opts.height, opts.width)
|
304 |
-
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
305 |
-
x = ae.decode(x)
|
306 |
-
|
307 |
-
if torch.cuda.is_available():
|
308 |
-
torch.cuda.synchronize()
|
309 |
-
t1 = time.perf_counter()
|
310 |
-
print(f"Done in {t1 - t0:.1f}s")
|
311 |
-
|
312 |
-
idx = save_image(nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt)
|
313 |
-
|
314 |
-
if loop:
|
315 |
-
print("-" * 80)
|
316 |
-
opts = parse_prompt(opts)
|
317 |
-
opts = parse_img_cond_path(opts)
|
318 |
-
|
319 |
-
with Image.open(opts.img_cond_path) as img:
|
320 |
-
width, height = img.size
|
321 |
-
opts.height = height
|
322 |
-
opts.width = width
|
323 |
-
|
324 |
-
opts = parse_img_mask_path(opts)
|
325 |
-
else:
|
326 |
-
opts = None
|
327 |
-
|
328 |
-
|
329 |
-
def app():
|
330 |
-
Fire(main)
|
331 |
-
|
332 |
-
|
333 |
-
if __name__ == "__main__":
|
334 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/cli_redux.py
DELETED
@@ -1,279 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import time
|
4 |
-
from dataclasses import dataclass
|
5 |
-
from glob import iglob
|
6 |
-
|
7 |
-
import torch
|
8 |
-
from fire import Fire
|
9 |
-
from transformers import pipeline
|
10 |
-
|
11 |
-
from flux.modules.image_embedders import ReduxImageEncoder
|
12 |
-
from flux.sampling import denoise, get_noise, get_schedule, prepare_redux, unpack
|
13 |
-
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image
|
14 |
-
|
15 |
-
|
16 |
-
@dataclass
|
17 |
-
class SamplingOptions:
|
18 |
-
prompt: str
|
19 |
-
width: int
|
20 |
-
height: int
|
21 |
-
num_steps: int
|
22 |
-
guidance: float
|
23 |
-
seed: int | None
|
24 |
-
img_cond_path: str
|
25 |
-
|
26 |
-
|
27 |
-
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
|
28 |
-
user_question = "Write /h for help, /q to quit and leave empty to repeat):\n"
|
29 |
-
usage = (
|
30 |
-
"Usage: Leave this field empty to do nothing "
|
31 |
-
"or write a command starting with a slash:\n"
|
32 |
-
"- '/w <width>' will set the width of the generated image\n"
|
33 |
-
"- '/h <height>' will set the height of the generated image\n"
|
34 |
-
"- '/s <seed>' sets the next seed\n"
|
35 |
-
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
|
36 |
-
"- '/n <steps>' sets the number of steps\n"
|
37 |
-
"- '/q' to quit"
|
38 |
-
)
|
39 |
-
|
40 |
-
while (prompt := input(user_question)).startswith("/"):
|
41 |
-
if prompt.startswith("/w"):
|
42 |
-
if prompt.count(" ") != 1:
|
43 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
44 |
-
continue
|
45 |
-
_, width = prompt.split()
|
46 |
-
options.width = 16 * (int(width) // 16)
|
47 |
-
print(
|
48 |
-
f"Setting resolution to {options.width} x {options.height} "
|
49 |
-
f"({options.height *options.width/1e6:.2f}MP)"
|
50 |
-
)
|
51 |
-
elif prompt.startswith("/h"):
|
52 |
-
if prompt.count(" ") != 1:
|
53 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
54 |
-
continue
|
55 |
-
_, height = prompt.split()
|
56 |
-
options.height = 16 * (int(height) // 16)
|
57 |
-
print(
|
58 |
-
f"Setting resolution to {options.width} x {options.height} "
|
59 |
-
f"({options.height *options.width/1e6:.2f}MP)"
|
60 |
-
)
|
61 |
-
elif prompt.startswith("/g"):
|
62 |
-
if prompt.count(" ") != 1:
|
63 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
64 |
-
continue
|
65 |
-
_, guidance = prompt.split()
|
66 |
-
options.guidance = float(guidance)
|
67 |
-
print(f"Setting guidance to {options.guidance}")
|
68 |
-
elif prompt.startswith("/s"):
|
69 |
-
if prompt.count(" ") != 1:
|
70 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
71 |
-
continue
|
72 |
-
_, seed = prompt.split()
|
73 |
-
options.seed = int(seed)
|
74 |
-
print(f"Setting seed to {options.seed}")
|
75 |
-
elif prompt.startswith("/n"):
|
76 |
-
if prompt.count(" ") != 1:
|
77 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
78 |
-
continue
|
79 |
-
_, steps = prompt.split()
|
80 |
-
options.num_steps = int(steps)
|
81 |
-
print(f"Setting number of steps to {options.num_steps}")
|
82 |
-
elif prompt.startswith("/q"):
|
83 |
-
print("Quitting")
|
84 |
-
return None
|
85 |
-
else:
|
86 |
-
if not prompt.startswith("/h"):
|
87 |
-
print(f"Got invalid command '{prompt}'\n{usage}")
|
88 |
-
print(usage)
|
89 |
-
return options
|
90 |
-
|
91 |
-
|
92 |
-
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
|
93 |
-
if options is None:
|
94 |
-
return None
|
95 |
-
|
96 |
-
user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
|
97 |
-
usage = (
|
98 |
-
"Usage: Either write your prompt directly, leave this field empty "
|
99 |
-
"to repeat the conditioning image or write a command starting with a slash:\n"
|
100 |
-
"- '/q' to quit"
|
101 |
-
)
|
102 |
-
|
103 |
-
while True:
|
104 |
-
img_cond_path = input(user_question)
|
105 |
-
|
106 |
-
if img_cond_path.startswith("/"):
|
107 |
-
if img_cond_path.startswith("/q"):
|
108 |
-
print("Quitting")
|
109 |
-
return None
|
110 |
-
else:
|
111 |
-
if not img_cond_path.startswith("/h"):
|
112 |
-
print(f"Got invalid command '{img_cond_path}'\n{usage}")
|
113 |
-
print(usage)
|
114 |
-
continue
|
115 |
-
|
116 |
-
if img_cond_path == "":
|
117 |
-
break
|
118 |
-
|
119 |
-
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
|
120 |
-
(".jpg", ".jpeg", ".png", ".webp")
|
121 |
-
):
|
122 |
-
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
|
123 |
-
continue
|
124 |
-
|
125 |
-
options.img_cond_path = img_cond_path
|
126 |
-
break
|
127 |
-
|
128 |
-
return options
|
129 |
-
|
130 |
-
|
131 |
-
@torch.inference_mode()
|
132 |
-
def main(
|
133 |
-
name: str = "flux-dev",
|
134 |
-
width: int = 1360,
|
135 |
-
height: int = 768,
|
136 |
-
seed: int | None = None,
|
137 |
-
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
138 |
-
num_steps: int | None = None,
|
139 |
-
loop: bool = False,
|
140 |
-
guidance: float = 2.5,
|
141 |
-
offload: bool = False,
|
142 |
-
output_dir: str = "output",
|
143 |
-
add_sampling_metadata: bool = True,
|
144 |
-
img_cond_path: str = "assets/robot.webp",
|
145 |
-
):
|
146 |
-
"""
|
147 |
-
Sample the flux model. Either interactively (set `--loop`) or run for a
|
148 |
-
single image.
|
149 |
-
|
150 |
-
Args:
|
151 |
-
name: Name of the model to load
|
152 |
-
height: height of the sample in pixels (should be a multiple of 16)
|
153 |
-
width: width of the sample in pixels (should be a multiple of 16)
|
154 |
-
seed: Set a seed for sampling
|
155 |
-
output_name: where to save the output image, `{idx}` will be replaced
|
156 |
-
by the index of the sample
|
157 |
-
prompt: Prompt used for sampling
|
158 |
-
device: Pytorch device
|
159 |
-
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
|
160 |
-
loop: start an interactive session and sample multiple times
|
161 |
-
guidance: guidance value used for guidance distillation
|
162 |
-
add_sampling_metadata: Add the prompt to the image Exif metadata
|
163 |
-
img_cond_path: path to conditioning image (jpeg/png/webp)
|
164 |
-
"""
|
165 |
-
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
|
166 |
-
|
167 |
-
if name not in configs:
|
168 |
-
available = ", ".join(configs.keys())
|
169 |
-
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
170 |
-
|
171 |
-
torch_device = torch.device(device)
|
172 |
-
if num_steps is None:
|
173 |
-
num_steps = 4 if name == "flux-schnell" else 50
|
174 |
-
|
175 |
-
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
176 |
-
if not os.path.exists(output_dir):
|
177 |
-
os.makedirs(output_dir)
|
178 |
-
idx = 0
|
179 |
-
else:
|
180 |
-
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
|
181 |
-
if len(fns) > 0:
|
182 |
-
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
183 |
-
else:
|
184 |
-
idx = 0
|
185 |
-
|
186 |
-
# init all components
|
187 |
-
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
|
188 |
-
clip = load_clip(torch_device)
|
189 |
-
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
190 |
-
ae = load_ae(name, device="cpu" if offload else torch_device)
|
191 |
-
img_embedder = ReduxImageEncoder(torch_device)
|
192 |
-
|
193 |
-
rng = torch.Generator(device="cpu")
|
194 |
-
prompt = ""
|
195 |
-
opts = SamplingOptions(
|
196 |
-
prompt=prompt,
|
197 |
-
width=width,
|
198 |
-
height=height,
|
199 |
-
num_steps=num_steps,
|
200 |
-
guidance=guidance,
|
201 |
-
seed=seed,
|
202 |
-
img_cond_path=img_cond_path,
|
203 |
-
)
|
204 |
-
|
205 |
-
if loop:
|
206 |
-
opts = parse_prompt(opts)
|
207 |
-
opts = parse_img_cond_path(opts)
|
208 |
-
|
209 |
-
while opts is not None:
|
210 |
-
if opts.seed is None:
|
211 |
-
opts.seed = rng.seed()
|
212 |
-
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
|
213 |
-
t0 = time.perf_counter()
|
214 |
-
|
215 |
-
# prepare input
|
216 |
-
x = get_noise(
|
217 |
-
1,
|
218 |
-
opts.height,
|
219 |
-
opts.width,
|
220 |
-
device=torch_device,
|
221 |
-
dtype=torch.bfloat16,
|
222 |
-
seed=opts.seed,
|
223 |
-
)
|
224 |
-
opts.seed = None
|
225 |
-
if offload:
|
226 |
-
ae = ae.cpu()
|
227 |
-
torch.cuda.empty_cache()
|
228 |
-
t5, clip = t5.to(torch_device), clip.to(torch_device)
|
229 |
-
inp = prepare_redux(
|
230 |
-
t5,
|
231 |
-
clip,
|
232 |
-
x,
|
233 |
-
prompt=opts.prompt,
|
234 |
-
encoder=img_embedder,
|
235 |
-
img_cond_path=opts.img_cond_path,
|
236 |
-
)
|
237 |
-
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
238 |
-
|
239 |
-
# offload TEs to CPU, load model to gpu
|
240 |
-
if offload:
|
241 |
-
t5, clip = t5.cpu(), clip.cpu()
|
242 |
-
torch.cuda.empty_cache()
|
243 |
-
model = model.to(torch_device)
|
244 |
-
|
245 |
-
# denoise initial noise
|
246 |
-
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
|
247 |
-
|
248 |
-
# offload model, load autoencoder to gpu
|
249 |
-
if offload:
|
250 |
-
model.cpu()
|
251 |
-
torch.cuda.empty_cache()
|
252 |
-
ae.decoder.to(x.device)
|
253 |
-
|
254 |
-
# decode latents to pixel space
|
255 |
-
x = unpack(x.float(), opts.height, opts.width)
|
256 |
-
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
257 |
-
x = ae.decode(x)
|
258 |
-
|
259 |
-
if torch.cuda.is_available():
|
260 |
-
torch.cuda.synchronize()
|
261 |
-
t1 = time.perf_counter()
|
262 |
-
print(f"Done in {t1 - t0:.1f}s")
|
263 |
-
|
264 |
-
idx = save_image(nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt)
|
265 |
-
|
266 |
-
if loop:
|
267 |
-
print("-" * 80)
|
268 |
-
opts = parse_prompt(opts)
|
269 |
-
opts = parse_img_cond_path(opts)
|
270 |
-
else:
|
271 |
-
opts = None
|
272 |
-
|
273 |
-
|
274 |
-
def app():
|
275 |
-
Fire(main)
|
276 |
-
|
277 |
-
|
278 |
-
if __name__ == "__main__":
|
279 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/math.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from einops import rearrange
|
3 |
-
from torch import Tensor
|
4 |
-
|
5 |
-
|
6 |
-
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
7 |
-
q, k = apply_rope(q, k, pe)
|
8 |
-
|
9 |
-
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
10 |
-
x = rearrange(x, "B H L D -> B L (H D)")
|
11 |
-
|
12 |
-
return x
|
13 |
-
|
14 |
-
|
15 |
-
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
16 |
-
assert dim % 2 == 0
|
17 |
-
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
18 |
-
omega = 1.0 / (theta**scale)
|
19 |
-
out = torch.einsum("...n,d->...nd", pos, omega)
|
20 |
-
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
21 |
-
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
22 |
-
return out.float()
|
23 |
-
|
24 |
-
|
25 |
-
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
26 |
-
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
27 |
-
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
28 |
-
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
29 |
-
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
30 |
-
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/model.py
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from torch import Tensor, nn
|
5 |
-
|
6 |
-
from flux.modules.layers import (
|
7 |
-
DoubleStreamBlock,
|
8 |
-
EmbedND,
|
9 |
-
LastLayer,
|
10 |
-
MLPEmbedder,
|
11 |
-
SingleStreamBlock,
|
12 |
-
timestep_embedding,
|
13 |
-
)
|
14 |
-
from flux.modules.lora import LinearLora, replace_linear_with_lora
|
15 |
-
|
16 |
-
|
17 |
-
@dataclass
|
18 |
-
class FluxParams:
|
19 |
-
in_channels: int
|
20 |
-
out_channels: int
|
21 |
-
vec_in_dim: int
|
22 |
-
context_in_dim: int
|
23 |
-
hidden_size: int
|
24 |
-
mlp_ratio: float
|
25 |
-
num_heads: int
|
26 |
-
depth: int
|
27 |
-
depth_single_blocks: int
|
28 |
-
axes_dim: list[int]
|
29 |
-
theta: int
|
30 |
-
qkv_bias: bool
|
31 |
-
guidance_embed: bool
|
32 |
-
|
33 |
-
|
34 |
-
class Flux(nn.Module):
|
35 |
-
"""
|
36 |
-
Transformer model for flow matching on sequences.
|
37 |
-
"""
|
38 |
-
|
39 |
-
def __init__(self, params: FluxParams):
|
40 |
-
super().__init__()
|
41 |
-
|
42 |
-
self.params = params
|
43 |
-
self.in_channels = params.in_channels
|
44 |
-
self.out_channels = params.out_channels
|
45 |
-
if params.hidden_size % params.num_heads != 0:
|
46 |
-
raise ValueError(
|
47 |
-
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
48 |
-
)
|
49 |
-
pe_dim = params.hidden_size // params.num_heads
|
50 |
-
if sum(params.axes_dim) != pe_dim:
|
51 |
-
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
52 |
-
self.hidden_size = params.hidden_size
|
53 |
-
self.num_heads = params.num_heads
|
54 |
-
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
55 |
-
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
56 |
-
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
57 |
-
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
58 |
-
self.guidance_in = (
|
59 |
-
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
60 |
-
)
|
61 |
-
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
62 |
-
|
63 |
-
self.double_blocks = nn.ModuleList(
|
64 |
-
[
|
65 |
-
DoubleStreamBlock(
|
66 |
-
self.hidden_size,
|
67 |
-
self.num_heads,
|
68 |
-
mlp_ratio=params.mlp_ratio,
|
69 |
-
qkv_bias=params.qkv_bias,
|
70 |
-
)
|
71 |
-
for _ in range(params.depth)
|
72 |
-
]
|
73 |
-
)
|
74 |
-
|
75 |
-
self.single_blocks = nn.ModuleList(
|
76 |
-
[
|
77 |
-
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
|
78 |
-
for _ in range(params.depth_single_blocks)
|
79 |
-
]
|
80 |
-
)
|
81 |
-
|
82 |
-
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
83 |
-
|
84 |
-
def forward(
|
85 |
-
self,
|
86 |
-
img: Tensor,
|
87 |
-
img_ids: Tensor,
|
88 |
-
txt: Tensor,
|
89 |
-
txt_ids: Tensor,
|
90 |
-
timesteps: Tensor,
|
91 |
-
y: Tensor,
|
92 |
-
guidance: Tensor | None = None,
|
93 |
-
) -> Tensor:
|
94 |
-
if img.ndim != 3 or txt.ndim != 3:
|
95 |
-
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
96 |
-
|
97 |
-
# running on sequences img
|
98 |
-
img = self.img_in(img)
|
99 |
-
vec = self.time_in(timestep_embedding(timesteps, 256))
|
100 |
-
if self.params.guidance_embed:
|
101 |
-
if guidance is None:
|
102 |
-
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
103 |
-
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
104 |
-
vec = vec + self.vector_in(y)
|
105 |
-
txt = self.txt_in(txt)
|
106 |
-
|
107 |
-
ids = torch.cat((txt_ids, img_ids), dim=1)
|
108 |
-
pe = self.pe_embedder(ids)
|
109 |
-
|
110 |
-
for block in self.double_blocks:
|
111 |
-
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
112 |
-
|
113 |
-
img = torch.cat((txt, img), 1)
|
114 |
-
for block in self.single_blocks:
|
115 |
-
img = block(img, vec=vec, pe=pe)
|
116 |
-
img = img[:, txt.shape[1] :, ...]
|
117 |
-
|
118 |
-
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
119 |
-
return img
|
120 |
-
|
121 |
-
|
122 |
-
class FluxLoraWrapper(Flux):
|
123 |
-
def __init__(
|
124 |
-
self,
|
125 |
-
lora_rank: int = 128,
|
126 |
-
lora_scale: float = 1.0,
|
127 |
-
*args,
|
128 |
-
**kwargs,
|
129 |
-
) -> None:
|
130 |
-
super().__init__(*args, **kwargs)
|
131 |
-
|
132 |
-
self.lora_rank = lora_rank
|
133 |
-
|
134 |
-
replace_linear_with_lora(
|
135 |
-
self,
|
136 |
-
max_rank=lora_rank,
|
137 |
-
scale=lora_scale,
|
138 |
-
)
|
139 |
-
|
140 |
-
def set_lora_scale(self, scale: float) -> None:
|
141 |
-
for module in self.modules():
|
142 |
-
if isinstance(module, LinearLora):
|
143 |
-
module.set_scale(scale=scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/modules/autoencoder.py
DELETED
@@ -1,312 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from einops import rearrange
|
5 |
-
from torch import Tensor, nn
|
6 |
-
|
7 |
-
|
8 |
-
@dataclass
|
9 |
-
class AutoEncoderParams:
|
10 |
-
resolution: int
|
11 |
-
in_channels: int
|
12 |
-
ch: int
|
13 |
-
out_ch: int
|
14 |
-
ch_mult: list[int]
|
15 |
-
num_res_blocks: int
|
16 |
-
z_channels: int
|
17 |
-
scale_factor: float
|
18 |
-
shift_factor: float
|
19 |
-
|
20 |
-
|
21 |
-
def swish(x: Tensor) -> Tensor:
|
22 |
-
return x * torch.sigmoid(x)
|
23 |
-
|
24 |
-
|
25 |
-
class AttnBlock(nn.Module):
|
26 |
-
def __init__(self, in_channels: int):
|
27 |
-
super().__init__()
|
28 |
-
self.in_channels = in_channels
|
29 |
-
|
30 |
-
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
31 |
-
|
32 |
-
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
33 |
-
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
34 |
-
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
35 |
-
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
36 |
-
|
37 |
-
def attention(self, h_: Tensor) -> Tensor:
|
38 |
-
h_ = self.norm(h_)
|
39 |
-
q = self.q(h_)
|
40 |
-
k = self.k(h_)
|
41 |
-
v = self.v(h_)
|
42 |
-
|
43 |
-
b, c, h, w = q.shape
|
44 |
-
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
45 |
-
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
46 |
-
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
47 |
-
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
48 |
-
|
49 |
-
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
50 |
-
|
51 |
-
def forward(self, x: Tensor) -> Tensor:
|
52 |
-
return x + self.proj_out(self.attention(x))
|
53 |
-
|
54 |
-
|
55 |
-
class ResnetBlock(nn.Module):
|
56 |
-
def __init__(self, in_channels: int, out_channels: int):
|
57 |
-
super().__init__()
|
58 |
-
self.in_channels = in_channels
|
59 |
-
out_channels = in_channels if out_channels is None else out_channels
|
60 |
-
self.out_channels = out_channels
|
61 |
-
|
62 |
-
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
63 |
-
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
64 |
-
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
65 |
-
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
66 |
-
if self.in_channels != self.out_channels:
|
67 |
-
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
68 |
-
|
69 |
-
def forward(self, x):
|
70 |
-
h = x
|
71 |
-
h = self.norm1(h)
|
72 |
-
h = swish(h)
|
73 |
-
h = self.conv1(h)
|
74 |
-
|
75 |
-
h = self.norm2(h)
|
76 |
-
h = swish(h)
|
77 |
-
h = self.conv2(h)
|
78 |
-
|
79 |
-
if self.in_channels != self.out_channels:
|
80 |
-
x = self.nin_shortcut(x)
|
81 |
-
|
82 |
-
return x + h
|
83 |
-
|
84 |
-
|
85 |
-
class Downsample(nn.Module):
|
86 |
-
def __init__(self, in_channels: int):
|
87 |
-
super().__init__()
|
88 |
-
# no asymmetric padding in torch conv, must do it ourselves
|
89 |
-
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
90 |
-
|
91 |
-
def forward(self, x: Tensor):
|
92 |
-
pad = (0, 1, 0, 1)
|
93 |
-
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
94 |
-
x = self.conv(x)
|
95 |
-
return x
|
96 |
-
|
97 |
-
|
98 |
-
class Upsample(nn.Module):
|
99 |
-
def __init__(self, in_channels: int):
|
100 |
-
super().__init__()
|
101 |
-
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
102 |
-
|
103 |
-
def forward(self, x: Tensor):
|
104 |
-
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
105 |
-
x = self.conv(x)
|
106 |
-
return x
|
107 |
-
|
108 |
-
|
109 |
-
class Encoder(nn.Module):
|
110 |
-
def __init__(
|
111 |
-
self,
|
112 |
-
resolution: int,
|
113 |
-
in_channels: int,
|
114 |
-
ch: int,
|
115 |
-
ch_mult: list[int],
|
116 |
-
num_res_blocks: int,
|
117 |
-
z_channels: int,
|
118 |
-
):
|
119 |
-
super().__init__()
|
120 |
-
self.ch = ch
|
121 |
-
self.num_resolutions = len(ch_mult)
|
122 |
-
self.num_res_blocks = num_res_blocks
|
123 |
-
self.resolution = resolution
|
124 |
-
self.in_channels = in_channels
|
125 |
-
# downsampling
|
126 |
-
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
127 |
-
|
128 |
-
curr_res = resolution
|
129 |
-
in_ch_mult = (1,) + tuple(ch_mult)
|
130 |
-
self.in_ch_mult = in_ch_mult
|
131 |
-
self.down = nn.ModuleList()
|
132 |
-
block_in = self.ch
|
133 |
-
for i_level in range(self.num_resolutions):
|
134 |
-
block = nn.ModuleList()
|
135 |
-
attn = nn.ModuleList()
|
136 |
-
block_in = ch * in_ch_mult[i_level]
|
137 |
-
block_out = ch * ch_mult[i_level]
|
138 |
-
for _ in range(self.num_res_blocks):
|
139 |
-
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
140 |
-
block_in = block_out
|
141 |
-
down = nn.Module()
|
142 |
-
down.block = block
|
143 |
-
down.attn = attn
|
144 |
-
if i_level != self.num_resolutions - 1:
|
145 |
-
down.downsample = Downsample(block_in)
|
146 |
-
curr_res = curr_res // 2
|
147 |
-
self.down.append(down)
|
148 |
-
|
149 |
-
# middle
|
150 |
-
self.mid = nn.Module()
|
151 |
-
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
152 |
-
self.mid.attn_1 = AttnBlock(block_in)
|
153 |
-
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
154 |
-
|
155 |
-
# end
|
156 |
-
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
157 |
-
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
158 |
-
|
159 |
-
def forward(self, x: Tensor) -> Tensor:
|
160 |
-
# downsampling
|
161 |
-
hs = [self.conv_in(x)]
|
162 |
-
for i_level in range(self.num_resolutions):
|
163 |
-
for i_block in range(self.num_res_blocks):
|
164 |
-
h = self.down[i_level].block[i_block](hs[-1])
|
165 |
-
if len(self.down[i_level].attn) > 0:
|
166 |
-
h = self.down[i_level].attn[i_block](h)
|
167 |
-
hs.append(h)
|
168 |
-
if i_level != self.num_resolutions - 1:
|
169 |
-
hs.append(self.down[i_level].downsample(hs[-1]))
|
170 |
-
|
171 |
-
# middle
|
172 |
-
h = hs[-1]
|
173 |
-
h = self.mid.block_1(h)
|
174 |
-
h = self.mid.attn_1(h)
|
175 |
-
h = self.mid.block_2(h)
|
176 |
-
# end
|
177 |
-
h = self.norm_out(h)
|
178 |
-
h = swish(h)
|
179 |
-
h = self.conv_out(h)
|
180 |
-
return h
|
181 |
-
|
182 |
-
|
183 |
-
class Decoder(nn.Module):
|
184 |
-
def __init__(
|
185 |
-
self,
|
186 |
-
ch: int,
|
187 |
-
out_ch: int,
|
188 |
-
ch_mult: list[int],
|
189 |
-
num_res_blocks: int,
|
190 |
-
in_channels: int,
|
191 |
-
resolution: int,
|
192 |
-
z_channels: int,
|
193 |
-
):
|
194 |
-
super().__init__()
|
195 |
-
self.ch = ch
|
196 |
-
self.num_resolutions = len(ch_mult)
|
197 |
-
self.num_res_blocks = num_res_blocks
|
198 |
-
self.resolution = resolution
|
199 |
-
self.in_channels = in_channels
|
200 |
-
self.ffactor = 2 ** (self.num_resolutions - 1)
|
201 |
-
|
202 |
-
# compute in_ch_mult, block_in and curr_res at lowest res
|
203 |
-
block_in = ch * ch_mult[self.num_resolutions - 1]
|
204 |
-
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
205 |
-
self.z_shape = (1, z_channels, curr_res, curr_res)
|
206 |
-
|
207 |
-
# z to block_in
|
208 |
-
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
209 |
-
|
210 |
-
# middle
|
211 |
-
self.mid = nn.Module()
|
212 |
-
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
213 |
-
self.mid.attn_1 = AttnBlock(block_in)
|
214 |
-
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
215 |
-
|
216 |
-
# upsampling
|
217 |
-
self.up = nn.ModuleList()
|
218 |
-
for i_level in reversed(range(self.num_resolutions)):
|
219 |
-
block = nn.ModuleList()
|
220 |
-
attn = nn.ModuleList()
|
221 |
-
block_out = ch * ch_mult[i_level]
|
222 |
-
for _ in range(self.num_res_blocks + 1):
|
223 |
-
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
224 |
-
block_in = block_out
|
225 |
-
up = nn.Module()
|
226 |
-
up.block = block
|
227 |
-
up.attn = attn
|
228 |
-
if i_level != 0:
|
229 |
-
up.upsample = Upsample(block_in)
|
230 |
-
curr_res = curr_res * 2
|
231 |
-
self.up.insert(0, up) # prepend to get consistent order
|
232 |
-
|
233 |
-
# end
|
234 |
-
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
235 |
-
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
236 |
-
|
237 |
-
def forward(self, z: Tensor) -> Tensor:
|
238 |
-
# z to block_in
|
239 |
-
h = self.conv_in(z)
|
240 |
-
|
241 |
-
# middle
|
242 |
-
h = self.mid.block_1(h)
|
243 |
-
h = self.mid.attn_1(h)
|
244 |
-
h = self.mid.block_2(h)
|
245 |
-
|
246 |
-
# upsampling
|
247 |
-
for i_level in reversed(range(self.num_resolutions)):
|
248 |
-
for i_block in range(self.num_res_blocks + 1):
|
249 |
-
h = self.up[i_level].block[i_block](h)
|
250 |
-
if len(self.up[i_level].attn) > 0:
|
251 |
-
h = self.up[i_level].attn[i_block](h)
|
252 |
-
if i_level != 0:
|
253 |
-
h = self.up[i_level].upsample(h)
|
254 |
-
|
255 |
-
# end
|
256 |
-
h = self.norm_out(h)
|
257 |
-
h = swish(h)
|
258 |
-
h = self.conv_out(h)
|
259 |
-
return h
|
260 |
-
|
261 |
-
|
262 |
-
class DiagonalGaussian(nn.Module):
|
263 |
-
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
264 |
-
super().__init__()
|
265 |
-
self.sample = sample
|
266 |
-
self.chunk_dim = chunk_dim
|
267 |
-
|
268 |
-
def forward(self, z: Tensor) -> Tensor:
|
269 |
-
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
270 |
-
if self.sample:
|
271 |
-
std = torch.exp(0.5 * logvar)
|
272 |
-
return mean + std * torch.randn_like(mean)
|
273 |
-
else:
|
274 |
-
return mean
|
275 |
-
|
276 |
-
|
277 |
-
class AutoEncoder(nn.Module):
|
278 |
-
def __init__(self, params: AutoEncoderParams):
|
279 |
-
super().__init__()
|
280 |
-
self.encoder = Encoder(
|
281 |
-
resolution=params.resolution,
|
282 |
-
in_channels=params.in_channels,
|
283 |
-
ch=params.ch,
|
284 |
-
ch_mult=params.ch_mult,
|
285 |
-
num_res_blocks=params.num_res_blocks,
|
286 |
-
z_channels=params.z_channels,
|
287 |
-
)
|
288 |
-
self.decoder = Decoder(
|
289 |
-
resolution=params.resolution,
|
290 |
-
in_channels=params.in_channels,
|
291 |
-
ch=params.ch,
|
292 |
-
out_ch=params.out_ch,
|
293 |
-
ch_mult=params.ch_mult,
|
294 |
-
num_res_blocks=params.num_res_blocks,
|
295 |
-
z_channels=params.z_channels,
|
296 |
-
)
|
297 |
-
self.reg = DiagonalGaussian()
|
298 |
-
|
299 |
-
self.scale_factor = params.scale_factor
|
300 |
-
self.shift_factor = params.shift_factor
|
301 |
-
|
302 |
-
def encode(self, x: Tensor) -> Tensor:
|
303 |
-
z = self.reg(self.encoder(x))
|
304 |
-
z = self.scale_factor * (z - self.shift_factor)
|
305 |
-
return z
|
306 |
-
|
307 |
-
def decode(self, z: Tensor) -> Tensor:
|
308 |
-
z = z / self.scale_factor + self.shift_factor
|
309 |
-
return self.decoder(z)
|
310 |
-
|
311 |
-
def forward(self, x: Tensor) -> Tensor:
|
312 |
-
return self.decode(self.encode(x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/modules/conditioner.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
from torch import Tensor, nn
|
2 |
-
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
3 |
-
|
4 |
-
|
5 |
-
class HFEmbedder(nn.Module):
|
6 |
-
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
7 |
-
super().__init__()
|
8 |
-
self.is_clip = version.startswith("openai")
|
9 |
-
self.max_length = max_length
|
10 |
-
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
11 |
-
|
12 |
-
if self.is_clip:
|
13 |
-
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
14 |
-
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
15 |
-
else:
|
16 |
-
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
17 |
-
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
18 |
-
|
19 |
-
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
20 |
-
|
21 |
-
def forward(self, text: list[str]) -> Tensor:
|
22 |
-
batch_encoding = self.tokenizer(
|
23 |
-
text,
|
24 |
-
truncation=True,
|
25 |
-
max_length=self.max_length,
|
26 |
-
return_length=False,
|
27 |
-
return_overflowing_tokens=False,
|
28 |
-
padding="max_length",
|
29 |
-
return_tensors="pt",
|
30 |
-
)
|
31 |
-
|
32 |
-
outputs = self.hf_module(
|
33 |
-
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
34 |
-
attention_mask=None,
|
35 |
-
output_hidden_states=False,
|
36 |
-
)
|
37 |
-
return outputs[self.output_key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/modules/image_embedders.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
from einops import rearrange, repeat
|
7 |
-
from PIL import Image
|
8 |
-
from safetensors.torch import load_file as load_sft
|
9 |
-
from torch import nn
|
10 |
-
from transformers import AutoModelForDepthEstimation, AutoProcessor, SiglipImageProcessor, SiglipVisionModel
|
11 |
-
|
12 |
-
from flux.util import print_load_warning
|
13 |
-
|
14 |
-
|
15 |
-
class DepthImageEncoder:
|
16 |
-
depth_model_name = "LiheYoung/depth-anything-large-hf"
|
17 |
-
|
18 |
-
def __init__(self, device):
|
19 |
-
self.device = device
|
20 |
-
self.depth_model = AutoModelForDepthEstimation.from_pretrained(self.depth_model_name).to(device)
|
21 |
-
self.processor = AutoProcessor.from_pretrained(self.depth_model_name)
|
22 |
-
|
23 |
-
def __call__(self, img: torch.Tensor) -> torch.Tensor:
|
24 |
-
hw = img.shape[-2:]
|
25 |
-
|
26 |
-
img = torch.clamp(img, -1.0, 1.0)
|
27 |
-
img_byte = ((img + 1.0) * 127.5).byte()
|
28 |
-
|
29 |
-
img = self.processor(img_byte, return_tensors="pt")["pixel_values"]
|
30 |
-
depth = self.depth_model(img.to(self.device)).predicted_depth
|
31 |
-
depth = repeat(depth, "b h w -> b 3 h w")
|
32 |
-
depth = torch.nn.functional.interpolate(depth, hw, mode="bicubic", antialias=True)
|
33 |
-
|
34 |
-
depth = depth / 127.5 - 1.0
|
35 |
-
return depth
|
36 |
-
|
37 |
-
|
38 |
-
class CannyImageEncoder:
|
39 |
-
def __init__(
|
40 |
-
self,
|
41 |
-
device,
|
42 |
-
min_t: int = 50,
|
43 |
-
max_t: int = 200,
|
44 |
-
):
|
45 |
-
self.device = device
|
46 |
-
self.min_t = min_t
|
47 |
-
self.max_t = max_t
|
48 |
-
|
49 |
-
def __call__(self, img: torch.Tensor) -> torch.Tensor:
|
50 |
-
assert img.shape[0] == 1, "Only batch size 1 is supported"
|
51 |
-
|
52 |
-
img = rearrange(img[0], "c h w -> h w c")
|
53 |
-
img = torch.clamp(img, -1.0, 1.0)
|
54 |
-
img_np = ((img + 1.0) * 127.5).numpy().astype(np.uint8)
|
55 |
-
|
56 |
-
# Apply Canny edge detection
|
57 |
-
canny = cv2.Canny(img_np, self.min_t, self.max_t)
|
58 |
-
|
59 |
-
# Convert back to torch tensor and reshape
|
60 |
-
canny = torch.from_numpy(canny).float() / 127.5 - 1.0
|
61 |
-
canny = rearrange(canny, "h w -> 1 1 h w")
|
62 |
-
canny = repeat(canny, "b 1 ... -> b 3 ...")
|
63 |
-
return canny.to(self.device)
|
64 |
-
|
65 |
-
|
66 |
-
class ReduxImageEncoder(nn.Module):
|
67 |
-
siglip_model_name = "google/siglip-so400m-patch14-384"
|
68 |
-
|
69 |
-
def __init__(
|
70 |
-
self,
|
71 |
-
device,
|
72 |
-
redux_dim: int = 1152,
|
73 |
-
txt_in_features: int = 4096,
|
74 |
-
redux_path: str | None = os.getenv("FLUX_REDUX"),
|
75 |
-
dtype=torch.bfloat16,
|
76 |
-
) -> None:
|
77 |
-
assert redux_path is not None, "Redux path must be provided"
|
78 |
-
|
79 |
-
super().__init__()
|
80 |
-
|
81 |
-
self.redux_dim = redux_dim
|
82 |
-
self.device = device if isinstance(device, torch.device) else torch.device(device)
|
83 |
-
self.dtype = dtype
|
84 |
-
|
85 |
-
with self.device:
|
86 |
-
self.redux_up = nn.Linear(redux_dim, txt_in_features * 3, dtype=dtype)
|
87 |
-
self.redux_down = nn.Linear(txt_in_features * 3, txt_in_features, dtype=dtype)
|
88 |
-
|
89 |
-
sd = load_sft(redux_path, device=str(device))
|
90 |
-
missing, unexpected = self.load_state_dict(sd, strict=False, assign=True)
|
91 |
-
print_load_warning(missing, unexpected)
|
92 |
-
|
93 |
-
self.siglip = SiglipVisionModel.from_pretrained(self.siglip_model_name).to(dtype=dtype)
|
94 |
-
self.normalize = SiglipImageProcessor.from_pretrained(self.siglip_model_name)
|
95 |
-
|
96 |
-
def __call__(self, x: Image.Image) -> torch.Tensor:
|
97 |
-
imgs = self.normalize.preprocess(images=[x], do_resize=True, return_tensors="pt", do_convert_rgb=True)
|
98 |
-
|
99 |
-
_encoded_x = self.siglip(**imgs.to(device=self.device, dtype=self.dtype)).last_hidden_state
|
100 |
-
|
101 |
-
projected_x = self.redux_down(nn.functional.silu(self.redux_up(_encoded_x)))
|
102 |
-
|
103 |
-
return projected_x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/modules/layers.py
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from dataclasses import dataclass
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from einops import rearrange
|
6 |
-
from torch import Tensor, nn
|
7 |
-
|
8 |
-
from flux.math import attention, rope
|
9 |
-
|
10 |
-
|
11 |
-
class EmbedND(nn.Module):
|
12 |
-
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
13 |
-
super().__init__()
|
14 |
-
self.dim = dim
|
15 |
-
self.theta = theta
|
16 |
-
self.axes_dim = axes_dim
|
17 |
-
|
18 |
-
def forward(self, ids: Tensor) -> Tensor:
|
19 |
-
n_axes = ids.shape[-1]
|
20 |
-
emb = torch.cat(
|
21 |
-
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
22 |
-
dim=-3,
|
23 |
-
)
|
24 |
-
|
25 |
-
return emb.unsqueeze(1)
|
26 |
-
|
27 |
-
|
28 |
-
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
29 |
-
"""
|
30 |
-
Create sinusoidal timestep embeddings.
|
31 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
32 |
-
These may be fractional.
|
33 |
-
:param dim: the dimension of the output.
|
34 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
35 |
-
:return: an (N, D) Tensor of positional embeddings.
|
36 |
-
"""
|
37 |
-
t = time_factor * t
|
38 |
-
half = dim // 2
|
39 |
-
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
40 |
-
t.device
|
41 |
-
)
|
42 |
-
|
43 |
-
args = t[:, None].float() * freqs[None]
|
44 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
45 |
-
if dim % 2:
|
46 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
47 |
-
if torch.is_floating_point(t):
|
48 |
-
embedding = embedding.to(t)
|
49 |
-
return embedding
|
50 |
-
|
51 |
-
|
52 |
-
class MLPEmbedder(nn.Module):
|
53 |
-
def __init__(self, in_dim: int, hidden_dim: int):
|
54 |
-
super().__init__()
|
55 |
-
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
56 |
-
self.silu = nn.SiLU()
|
57 |
-
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
58 |
-
|
59 |
-
def forward(self, x: Tensor) -> Tensor:
|
60 |
-
return self.out_layer(self.silu(self.in_layer(x)))
|
61 |
-
|
62 |
-
|
63 |
-
class RMSNorm(torch.nn.Module):
|
64 |
-
def __init__(self, dim: int):
|
65 |
-
super().__init__()
|
66 |
-
self.scale = nn.Parameter(torch.ones(dim))
|
67 |
-
|
68 |
-
def forward(self, x: Tensor):
|
69 |
-
x_dtype = x.dtype
|
70 |
-
x = x.float()
|
71 |
-
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
72 |
-
return (x * rrms).to(dtype=x_dtype) * self.scale
|
73 |
-
|
74 |
-
|
75 |
-
class QKNorm(torch.nn.Module):
|
76 |
-
def __init__(self, dim: int):
|
77 |
-
super().__init__()
|
78 |
-
self.query_norm = RMSNorm(dim)
|
79 |
-
self.key_norm = RMSNorm(dim)
|
80 |
-
|
81 |
-
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
82 |
-
q = self.query_norm(q)
|
83 |
-
k = self.key_norm(k)
|
84 |
-
return q.to(v), k.to(v)
|
85 |
-
|
86 |
-
|
87 |
-
class SelfAttention(nn.Module):
|
88 |
-
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
89 |
-
super().__init__()
|
90 |
-
self.num_heads = num_heads
|
91 |
-
head_dim = dim // num_heads
|
92 |
-
|
93 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
94 |
-
self.norm = QKNorm(head_dim)
|
95 |
-
self.proj = nn.Linear(dim, dim)
|
96 |
-
|
97 |
-
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
98 |
-
qkv = self.qkv(x)
|
99 |
-
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
100 |
-
q, k = self.norm(q, k, v)
|
101 |
-
x = attention(q, k, v, pe=pe)
|
102 |
-
x = self.proj(x)
|
103 |
-
return x
|
104 |
-
|
105 |
-
|
106 |
-
@dataclass
|
107 |
-
class ModulationOut:
|
108 |
-
shift: Tensor
|
109 |
-
scale: Tensor
|
110 |
-
gate: Tensor
|
111 |
-
|
112 |
-
|
113 |
-
class Modulation(nn.Module):
|
114 |
-
def __init__(self, dim: int, double: bool):
|
115 |
-
super().__init__()
|
116 |
-
self.is_double = double
|
117 |
-
self.multiplier = 6 if double else 3
|
118 |
-
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
119 |
-
|
120 |
-
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
121 |
-
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
122 |
-
|
123 |
-
return (
|
124 |
-
ModulationOut(*out[:3]),
|
125 |
-
ModulationOut(*out[3:]) if self.is_double else None,
|
126 |
-
)
|
127 |
-
|
128 |
-
|
129 |
-
class DoubleStreamBlock(nn.Module):
|
130 |
-
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
131 |
-
super().__init__()
|
132 |
-
|
133 |
-
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
134 |
-
self.num_heads = num_heads
|
135 |
-
self.hidden_size = hidden_size
|
136 |
-
self.img_mod = Modulation(hidden_size, double=True)
|
137 |
-
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
138 |
-
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
139 |
-
|
140 |
-
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
141 |
-
self.img_mlp = nn.Sequential(
|
142 |
-
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
143 |
-
nn.GELU(approximate="tanh"),
|
144 |
-
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
145 |
-
)
|
146 |
-
|
147 |
-
self.txt_mod = Modulation(hidden_size, double=True)
|
148 |
-
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
149 |
-
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
150 |
-
|
151 |
-
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
152 |
-
self.txt_mlp = nn.Sequential(
|
153 |
-
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
154 |
-
nn.GELU(approximate="tanh"),
|
155 |
-
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
156 |
-
)
|
157 |
-
|
158 |
-
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
|
159 |
-
img_mod1, img_mod2 = self.img_mod(vec)
|
160 |
-
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
161 |
-
|
162 |
-
# prepare image for attention
|
163 |
-
img_modulated = self.img_norm1(img)
|
164 |
-
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
165 |
-
img_qkv = self.img_attn.qkv(img_modulated)
|
166 |
-
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
167 |
-
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
168 |
-
|
169 |
-
# prepare txt for attention
|
170 |
-
txt_modulated = self.txt_norm1(txt)
|
171 |
-
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
172 |
-
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
173 |
-
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
174 |
-
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
175 |
-
|
176 |
-
# run actual attention
|
177 |
-
q = torch.cat((txt_q, img_q), dim=2)
|
178 |
-
k = torch.cat((txt_k, img_k), dim=2)
|
179 |
-
v = torch.cat((txt_v, img_v), dim=2)
|
180 |
-
|
181 |
-
attn = attention(q, k, v, pe=pe)
|
182 |
-
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
183 |
-
|
184 |
-
# calculate the img bloks
|
185 |
-
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
186 |
-
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
187 |
-
|
188 |
-
# calculate the txt bloks
|
189 |
-
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
190 |
-
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
191 |
-
return img, txt
|
192 |
-
|
193 |
-
|
194 |
-
class SingleStreamBlock(nn.Module):
|
195 |
-
"""
|
196 |
-
A DiT block with parallel linear layers as described in
|
197 |
-
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
198 |
-
"""
|
199 |
-
|
200 |
-
def __init__(
|
201 |
-
self,
|
202 |
-
hidden_size: int,
|
203 |
-
num_heads: int,
|
204 |
-
mlp_ratio: float = 4.0,
|
205 |
-
qk_scale: float | None = None,
|
206 |
-
):
|
207 |
-
super().__init__()
|
208 |
-
self.hidden_dim = hidden_size
|
209 |
-
self.num_heads = num_heads
|
210 |
-
head_dim = hidden_size // num_heads
|
211 |
-
self.scale = qk_scale or head_dim**-0.5
|
212 |
-
|
213 |
-
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
214 |
-
# qkv and mlp_in
|
215 |
-
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
216 |
-
# proj and mlp_out
|
217 |
-
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
218 |
-
|
219 |
-
self.norm = QKNorm(head_dim)
|
220 |
-
|
221 |
-
self.hidden_size = hidden_size
|
222 |
-
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
223 |
-
|
224 |
-
self.mlp_act = nn.GELU(approximate="tanh")
|
225 |
-
self.modulation = Modulation(hidden_size, double=False)
|
226 |
-
|
227 |
-
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
228 |
-
mod, _ = self.modulation(vec)
|
229 |
-
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
230 |
-
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
231 |
-
|
232 |
-
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
233 |
-
q, k = self.norm(q, k, v)
|
234 |
-
|
235 |
-
# compute attention
|
236 |
-
attn = attention(q, k, v, pe=pe)
|
237 |
-
# compute activation in mlp stream, cat again and run second linear layer
|
238 |
-
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
239 |
-
return x + mod.gate * output
|
240 |
-
|
241 |
-
|
242 |
-
class LastLayer(nn.Module):
|
243 |
-
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
244 |
-
super().__init__()
|
245 |
-
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
246 |
-
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
247 |
-
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
248 |
-
|
249 |
-
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
250 |
-
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
251 |
-
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
252 |
-
x = self.linear(x)
|
253 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/modules/lora.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
|
4 |
-
|
5 |
-
def replace_linear_with_lora(
|
6 |
-
module: nn.Module,
|
7 |
-
max_rank: int,
|
8 |
-
scale: float = 1.0,
|
9 |
-
) -> None:
|
10 |
-
for name, child in module.named_children():
|
11 |
-
if isinstance(child, nn.Linear):
|
12 |
-
new_lora = LinearLora(
|
13 |
-
in_features=child.in_features,
|
14 |
-
out_features=child.out_features,
|
15 |
-
bias=child.bias,
|
16 |
-
rank=max_rank,
|
17 |
-
scale=scale,
|
18 |
-
dtype=child.weight.dtype,
|
19 |
-
device=child.weight.device,
|
20 |
-
)
|
21 |
-
|
22 |
-
new_lora.weight = child.weight
|
23 |
-
new_lora.bias = child.bias if child.bias is not None else None
|
24 |
-
|
25 |
-
setattr(module, name, new_lora)
|
26 |
-
else:
|
27 |
-
replace_linear_with_lora(
|
28 |
-
module=child,
|
29 |
-
max_rank=max_rank,
|
30 |
-
scale=scale,
|
31 |
-
)
|
32 |
-
|
33 |
-
|
34 |
-
class LinearLora(nn.Linear):
|
35 |
-
def __init__(
|
36 |
-
self,
|
37 |
-
in_features: int,
|
38 |
-
out_features: int,
|
39 |
-
bias: bool,
|
40 |
-
rank: int,
|
41 |
-
dtype: torch.dtype,
|
42 |
-
device: torch.device,
|
43 |
-
lora_bias: bool = True,
|
44 |
-
scale: float = 1.0,
|
45 |
-
*args,
|
46 |
-
**kwargs,
|
47 |
-
) -> None:
|
48 |
-
super().__init__(
|
49 |
-
in_features=in_features,
|
50 |
-
out_features=out_features,
|
51 |
-
bias=bias is not None,
|
52 |
-
device=device,
|
53 |
-
dtype=dtype,
|
54 |
-
*args,
|
55 |
-
**kwargs,
|
56 |
-
)
|
57 |
-
|
58 |
-
assert isinstance(scale, float), "scale must be a float"
|
59 |
-
|
60 |
-
self.scale = scale
|
61 |
-
self.rank = rank
|
62 |
-
self.lora_bias = lora_bias
|
63 |
-
self.dtype = dtype
|
64 |
-
self.device = device
|
65 |
-
|
66 |
-
if rank > (new_rank := min(self.out_features, self.in_features)):
|
67 |
-
self.rank = new_rank
|
68 |
-
|
69 |
-
self.lora_A = nn.Linear(
|
70 |
-
in_features=in_features,
|
71 |
-
out_features=self.rank,
|
72 |
-
bias=False,
|
73 |
-
dtype=dtype,
|
74 |
-
device=device,
|
75 |
-
)
|
76 |
-
self.lora_B = nn.Linear(
|
77 |
-
in_features=self.rank,
|
78 |
-
out_features=out_features,
|
79 |
-
bias=self.lora_bias,
|
80 |
-
dtype=dtype,
|
81 |
-
device=device,
|
82 |
-
)
|
83 |
-
|
84 |
-
def set_scale(self, scale: float) -> None:
|
85 |
-
assert isinstance(scale, float), "scalar value must be a float"
|
86 |
-
self.scale = scale
|
87 |
-
|
88 |
-
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
89 |
-
base_out = super().forward(input)
|
90 |
-
|
91 |
-
_lora_out_B = self.lora_B(self.lora_A(input))
|
92 |
-
lora_update = _lora_out_B * self.scale
|
93 |
-
|
94 |
-
return base_out + lora_update
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/sampling.py
DELETED
@@ -1,282 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from typing import Callable
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
from einops import rearrange, repeat
|
7 |
-
from PIL import Image
|
8 |
-
from torch import Tensor
|
9 |
-
|
10 |
-
from .model import Flux
|
11 |
-
from .modules.autoencoder import AutoEncoder
|
12 |
-
from .modules.conditioner import HFEmbedder
|
13 |
-
from .modules.image_embedders import CannyImageEncoder, DepthImageEncoder, ReduxImageEncoder
|
14 |
-
|
15 |
-
|
16 |
-
def get_noise(
|
17 |
-
num_samples: int,
|
18 |
-
height: int,
|
19 |
-
width: int,
|
20 |
-
device: torch.device,
|
21 |
-
dtype: torch.dtype,
|
22 |
-
seed: int,
|
23 |
-
):
|
24 |
-
return torch.randn(
|
25 |
-
num_samples,
|
26 |
-
16,
|
27 |
-
# allow for packing
|
28 |
-
2 * math.ceil(height / 16),
|
29 |
-
2 * math.ceil(width / 16),
|
30 |
-
device=device,
|
31 |
-
dtype=dtype,
|
32 |
-
generator=torch.Generator(device=device).manual_seed(seed),
|
33 |
-
)
|
34 |
-
|
35 |
-
|
36 |
-
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
|
37 |
-
bs, c, h, w = img.shape
|
38 |
-
if bs == 1 and not isinstance(prompt, str):
|
39 |
-
bs = len(prompt)
|
40 |
-
|
41 |
-
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
42 |
-
if img.shape[0] == 1 and bs > 1:
|
43 |
-
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
44 |
-
|
45 |
-
img_ids = torch.zeros(h // 2, w // 2, 3)
|
46 |
-
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
47 |
-
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
48 |
-
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
49 |
-
|
50 |
-
if isinstance(prompt, str):
|
51 |
-
prompt = [prompt]
|
52 |
-
txt = t5(prompt)
|
53 |
-
if txt.shape[0] == 1 and bs > 1:
|
54 |
-
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
55 |
-
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
56 |
-
|
57 |
-
vec = clip(prompt)
|
58 |
-
if vec.shape[0] == 1 and bs > 1:
|
59 |
-
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
60 |
-
|
61 |
-
return {
|
62 |
-
"img": img,
|
63 |
-
"img_ids": img_ids.to(img.device),
|
64 |
-
"txt": txt.to(img.device),
|
65 |
-
"txt_ids": txt_ids.to(img.device),
|
66 |
-
"vec": vec.to(img.device),
|
67 |
-
}
|
68 |
-
|
69 |
-
|
70 |
-
def prepare_control(
|
71 |
-
t5: HFEmbedder,
|
72 |
-
clip: HFEmbedder,
|
73 |
-
img: Tensor,
|
74 |
-
prompt: str | list[str],
|
75 |
-
ae: AutoEncoder,
|
76 |
-
encoder: DepthImageEncoder | CannyImageEncoder,
|
77 |
-
img_cond_path: str,
|
78 |
-
) -> dict[str, Tensor]:
|
79 |
-
# load and encode the conditioning image
|
80 |
-
bs, _, h, w = img.shape
|
81 |
-
if bs == 1 and not isinstance(prompt, str):
|
82 |
-
bs = len(prompt)
|
83 |
-
|
84 |
-
img_cond = Image.open(img_cond_path).convert("RGB")
|
85 |
-
|
86 |
-
width = w * 8
|
87 |
-
height = h * 8
|
88 |
-
img_cond = img_cond.resize((width, height), Image.LANCZOS)
|
89 |
-
img_cond = np.array(img_cond)
|
90 |
-
img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
|
91 |
-
img_cond = rearrange(img_cond, "h w c -> 1 c h w")
|
92 |
-
|
93 |
-
with torch.no_grad():
|
94 |
-
img_cond = encoder(img_cond)
|
95 |
-
img_cond = ae.encode(img_cond)
|
96 |
-
|
97 |
-
img_cond = img_cond.to(torch.bfloat16)
|
98 |
-
img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
99 |
-
if img_cond.shape[0] == 1 and bs > 1:
|
100 |
-
img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)
|
101 |
-
|
102 |
-
return_dict = prepare(t5, clip, img, prompt)
|
103 |
-
return_dict["img_cond"] = img_cond
|
104 |
-
return return_dict
|
105 |
-
|
106 |
-
|
107 |
-
def prepare_fill(
|
108 |
-
t5: HFEmbedder,
|
109 |
-
clip: HFEmbedder,
|
110 |
-
img: Tensor,
|
111 |
-
prompt: str | list[str],
|
112 |
-
ae: AutoEncoder,
|
113 |
-
img_cond_path: str,
|
114 |
-
mask_path: str,
|
115 |
-
) -> dict[str, Tensor]:
|
116 |
-
# load and encode the conditioning image and the mask
|
117 |
-
bs, _, _, _ = img.shape
|
118 |
-
if bs == 1 and not isinstance(prompt, str):
|
119 |
-
bs = len(prompt)
|
120 |
-
|
121 |
-
img_cond = Image.open(img_cond_path).convert("RGB")
|
122 |
-
img_cond = np.array(img_cond)
|
123 |
-
img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
|
124 |
-
img_cond = rearrange(img_cond, "h w c -> 1 c h w")
|
125 |
-
|
126 |
-
mask = Image.open(mask_path).convert("L")
|
127 |
-
mask = np.array(mask)
|
128 |
-
mask = torch.from_numpy(mask).float() / 255.0
|
129 |
-
mask = rearrange(mask, "h w -> 1 1 h w")
|
130 |
-
|
131 |
-
with torch.no_grad():
|
132 |
-
img_cond = img_cond.to(img.device)
|
133 |
-
mask = mask.to(img.device)
|
134 |
-
img_cond = img_cond * (1 - mask)
|
135 |
-
img_cond = ae.encode(img_cond)
|
136 |
-
mask = mask[:, 0, :, :]
|
137 |
-
mask = mask.to(torch.bfloat16)
|
138 |
-
mask = rearrange(
|
139 |
-
mask,
|
140 |
-
"b (h ph) (w pw) -> b (ph pw) h w",
|
141 |
-
ph=8,
|
142 |
-
pw=8,
|
143 |
-
)
|
144 |
-
mask = rearrange(mask, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
145 |
-
if mask.shape[0] == 1 and bs > 1:
|
146 |
-
mask = repeat(mask, "1 ... -> bs ...", bs=bs)
|
147 |
-
|
148 |
-
img_cond = img_cond.to(torch.bfloat16)
|
149 |
-
img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
150 |
-
if img_cond.shape[0] == 1 and bs > 1:
|
151 |
-
img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)
|
152 |
-
|
153 |
-
img_cond = torch.cat((img_cond, mask), dim=-1)
|
154 |
-
|
155 |
-
return_dict = prepare(t5, clip, img, prompt)
|
156 |
-
return_dict["img_cond"] = img_cond.to(img.device)
|
157 |
-
return return_dict
|
158 |
-
|
159 |
-
|
160 |
-
def prepare_redux(
|
161 |
-
t5: HFEmbedder,
|
162 |
-
clip: HFEmbedder,
|
163 |
-
img: Tensor,
|
164 |
-
prompt: str | list[str],
|
165 |
-
encoder: ReduxImageEncoder,
|
166 |
-
img_cond_path: str,
|
167 |
-
) -> dict[str, Tensor]:
|
168 |
-
bs, _, h, w = img.shape
|
169 |
-
if bs == 1 and not isinstance(prompt, str):
|
170 |
-
bs = len(prompt)
|
171 |
-
|
172 |
-
img_cond = Image.open(img_cond_path).convert("RGB")
|
173 |
-
with torch.no_grad():
|
174 |
-
img_cond = encoder(img_cond)
|
175 |
-
|
176 |
-
img_cond = img_cond.to(torch.bfloat16)
|
177 |
-
if img_cond.shape[0] == 1 and bs > 1:
|
178 |
-
img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)
|
179 |
-
|
180 |
-
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
181 |
-
if img.shape[0] == 1 and bs > 1:
|
182 |
-
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
183 |
-
|
184 |
-
img_ids = torch.zeros(h // 2, w // 2, 3)
|
185 |
-
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
186 |
-
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
187 |
-
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
188 |
-
|
189 |
-
if isinstance(prompt, str):
|
190 |
-
prompt = [prompt]
|
191 |
-
txt = t5(prompt)
|
192 |
-
txt = torch.cat((txt, img_cond.to(txt)), dim=-2)
|
193 |
-
if txt.shape[0] == 1 and bs > 1:
|
194 |
-
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
195 |
-
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
196 |
-
|
197 |
-
vec = clip(prompt)
|
198 |
-
if vec.shape[0] == 1 and bs > 1:
|
199 |
-
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
200 |
-
|
201 |
-
return {
|
202 |
-
"img": img,
|
203 |
-
"img_ids": img_ids.to(img.device),
|
204 |
-
"txt": txt.to(img.device),
|
205 |
-
"txt_ids": txt_ids.to(img.device),
|
206 |
-
"vec": vec.to(img.device),
|
207 |
-
}
|
208 |
-
|
209 |
-
|
210 |
-
def time_shift(mu: float, sigma: float, t: Tensor):
|
211 |
-
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
212 |
-
|
213 |
-
|
214 |
-
def get_lin_function(
|
215 |
-
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
216 |
-
) -> Callable[[float], float]:
|
217 |
-
m = (y2 - y1) / (x2 - x1)
|
218 |
-
b = y1 - m * x1
|
219 |
-
return lambda x: m * x + b
|
220 |
-
|
221 |
-
|
222 |
-
def get_schedule(
|
223 |
-
num_steps: int,
|
224 |
-
image_seq_len: int,
|
225 |
-
base_shift: float = 0.5,
|
226 |
-
max_shift: float = 1.15,
|
227 |
-
shift: bool = True,
|
228 |
-
) -> list[float]:
|
229 |
-
# extra step for zero
|
230 |
-
timesteps = torch.linspace(1, 0, num_steps + 1)
|
231 |
-
|
232 |
-
# shifting the schedule to favor high timesteps for higher signal images
|
233 |
-
if shift:
|
234 |
-
# estimate mu based on linear estimation between two points
|
235 |
-
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
236 |
-
timesteps = time_shift(mu, 1.0, timesteps)
|
237 |
-
|
238 |
-
return timesteps.tolist()
|
239 |
-
|
240 |
-
|
241 |
-
def denoise(
|
242 |
-
model: Flux,
|
243 |
-
# model input
|
244 |
-
img: Tensor,
|
245 |
-
img_ids: Tensor,
|
246 |
-
txt: Tensor,
|
247 |
-
txt_ids: Tensor,
|
248 |
-
vec: Tensor,
|
249 |
-
# sampling parameters
|
250 |
-
timesteps: list[float],
|
251 |
-
guidance: float = 4.0,
|
252 |
-
# extra img tokens
|
253 |
-
img_cond: Tensor | None = None,
|
254 |
-
):
|
255 |
-
# this is ignored for schnell
|
256 |
-
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
257 |
-
for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]):
|
258 |
-
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
259 |
-
pred = model(
|
260 |
-
img=torch.cat((img, img_cond), dim=-1) if img_cond is not None else img,
|
261 |
-
img_ids=img_ids,
|
262 |
-
txt=txt,
|
263 |
-
txt_ids=txt_ids,
|
264 |
-
y=vec,
|
265 |
-
timesteps=t_vec,
|
266 |
-
guidance=guidance_vec,
|
267 |
-
)
|
268 |
-
|
269 |
-
img = img + (t_prev - t_curr) * pred
|
270 |
-
|
271 |
-
return img
|
272 |
-
|
273 |
-
|
274 |
-
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
275 |
-
return rearrange(
|
276 |
-
x,
|
277 |
-
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
278 |
-
h=math.ceil(height / 16),
|
279 |
-
w=math.ceil(width / 16),
|
280 |
-
ph=2,
|
281 |
-
pw=2,
|
282 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux/util.py
DELETED
@@ -1,447 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from dataclasses import dataclass
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from einops import rearrange
|
6 |
-
from huggingface_hub import hf_hub_download
|
7 |
-
from imwatermark import WatermarkEncoder
|
8 |
-
from PIL import ExifTags, Image
|
9 |
-
from safetensors.torch import load_file as load_sft
|
10 |
-
|
11 |
-
from flux.model import Flux, FluxLoraWrapper, FluxParams
|
12 |
-
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
|
13 |
-
from flux.modules.conditioner import HFEmbedder
|
14 |
-
|
15 |
-
|
16 |
-
def save_image(
|
17 |
-
nsfw_classifier,
|
18 |
-
name: str,
|
19 |
-
output_name: str,
|
20 |
-
idx: int,
|
21 |
-
x: torch.Tensor,
|
22 |
-
add_sampling_metadata: bool,
|
23 |
-
prompt: str,
|
24 |
-
nsfw_threshold: float = 0.85,
|
25 |
-
) -> int:
|
26 |
-
fn = output_name.format(idx=idx)
|
27 |
-
print(f"Saving {fn}")
|
28 |
-
# bring into PIL format and save
|
29 |
-
x = x.clamp(-1, 1)
|
30 |
-
x = embed_watermark(x.float())
|
31 |
-
x = rearrange(x[0], "c h w -> h w c")
|
32 |
-
|
33 |
-
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
34 |
-
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
|
35 |
-
|
36 |
-
if nsfw_score < nsfw_threshold:
|
37 |
-
exif_data = Image.Exif()
|
38 |
-
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
|
39 |
-
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
|
40 |
-
exif_data[ExifTags.Base.Model] = name
|
41 |
-
if add_sampling_metadata:
|
42 |
-
exif_data[ExifTags.Base.ImageDescription] = prompt
|
43 |
-
img.save(fn, exif=exif_data, quality=95, subsampling=0)
|
44 |
-
idx += 1
|
45 |
-
else:
|
46 |
-
print("Your generated image may contain NSFW content.")
|
47 |
-
|
48 |
-
return idx
|
49 |
-
|
50 |
-
|
51 |
-
@dataclass
|
52 |
-
class ModelSpec:
|
53 |
-
params: FluxParams
|
54 |
-
ae_params: AutoEncoderParams
|
55 |
-
ckpt_path: str | None
|
56 |
-
lora_path: str | None
|
57 |
-
ae_path: str | None
|
58 |
-
repo_id: str | None
|
59 |
-
repo_flow: str | None
|
60 |
-
repo_ae: str | None
|
61 |
-
|
62 |
-
|
63 |
-
configs = {
|
64 |
-
"flux-dev": ModelSpec(
|
65 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
66 |
-
repo_flow="flux1-dev.safetensors",
|
67 |
-
repo_ae="ae.safetensors",
|
68 |
-
ckpt_path=os.getenv("FLUX_DEV"),
|
69 |
-
lora_path=None,
|
70 |
-
params=FluxParams(
|
71 |
-
in_channels=64,
|
72 |
-
out_channels=64,
|
73 |
-
vec_in_dim=768,
|
74 |
-
context_in_dim=4096,
|
75 |
-
hidden_size=3072,
|
76 |
-
mlp_ratio=4.0,
|
77 |
-
num_heads=24,
|
78 |
-
depth=19,
|
79 |
-
depth_single_blocks=38,
|
80 |
-
axes_dim=[16, 56, 56],
|
81 |
-
theta=10_000,
|
82 |
-
qkv_bias=True,
|
83 |
-
guidance_embed=True,
|
84 |
-
),
|
85 |
-
ae_path=os.getenv("AE"),
|
86 |
-
ae_params=AutoEncoderParams(
|
87 |
-
resolution=256,
|
88 |
-
in_channels=3,
|
89 |
-
ch=128,
|
90 |
-
out_ch=3,
|
91 |
-
ch_mult=[1, 2, 4, 4],
|
92 |
-
num_res_blocks=2,
|
93 |
-
z_channels=16,
|
94 |
-
scale_factor=0.3611,
|
95 |
-
shift_factor=0.1159,
|
96 |
-
),
|
97 |
-
),
|
98 |
-
"flux-schnell": ModelSpec(
|
99 |
-
repo_id="black-forest-labs/FLUX.1-schnell",
|
100 |
-
repo_flow="flux1-schnell.safetensors",
|
101 |
-
repo_ae="ae.safetensors",
|
102 |
-
ckpt_path=os.getenv("FLUX_SCHNELL"),
|
103 |
-
lora_path=None,
|
104 |
-
params=FluxParams(
|
105 |
-
in_channels=64,
|
106 |
-
out_channels=64,
|
107 |
-
vec_in_dim=768,
|
108 |
-
context_in_dim=4096,
|
109 |
-
hidden_size=3072,
|
110 |
-
mlp_ratio=4.0,
|
111 |
-
num_heads=24,
|
112 |
-
depth=19,
|
113 |
-
depth_single_blocks=38,
|
114 |
-
axes_dim=[16, 56, 56],
|
115 |
-
theta=10_000,
|
116 |
-
qkv_bias=True,
|
117 |
-
guidance_embed=False,
|
118 |
-
),
|
119 |
-
ae_path=os.getenv("AE"),
|
120 |
-
ae_params=AutoEncoderParams(
|
121 |
-
resolution=256,
|
122 |
-
in_channels=3,
|
123 |
-
ch=128,
|
124 |
-
out_ch=3,
|
125 |
-
ch_mult=[1, 2, 4, 4],
|
126 |
-
num_res_blocks=2,
|
127 |
-
z_channels=16,
|
128 |
-
scale_factor=0.3611,
|
129 |
-
shift_factor=0.1159,
|
130 |
-
),
|
131 |
-
),
|
132 |
-
"flux-dev-canny": ModelSpec(
|
133 |
-
repo_id="black-forest-labs/FLUX.1-Canny-dev",
|
134 |
-
repo_flow="flux1-canny-dev.safetensors",
|
135 |
-
repo_ae="ae.safetensors",
|
136 |
-
ckpt_path=os.getenv("FLUX_DEV_CANNY"),
|
137 |
-
lora_path=None,
|
138 |
-
params=FluxParams(
|
139 |
-
in_channels=128,
|
140 |
-
out_channels=64,
|
141 |
-
vec_in_dim=768,
|
142 |
-
context_in_dim=4096,
|
143 |
-
hidden_size=3072,
|
144 |
-
mlp_ratio=4.0,
|
145 |
-
num_heads=24,
|
146 |
-
depth=19,
|
147 |
-
depth_single_blocks=38,
|
148 |
-
axes_dim=[16, 56, 56],
|
149 |
-
theta=10_000,
|
150 |
-
qkv_bias=True,
|
151 |
-
guidance_embed=True,
|
152 |
-
),
|
153 |
-
ae_path=os.getenv("AE"),
|
154 |
-
ae_params=AutoEncoderParams(
|
155 |
-
resolution=256,
|
156 |
-
in_channels=3,
|
157 |
-
ch=128,
|
158 |
-
out_ch=3,
|
159 |
-
ch_mult=[1, 2, 4, 4],
|
160 |
-
num_res_blocks=2,
|
161 |
-
z_channels=16,
|
162 |
-
scale_factor=0.3611,
|
163 |
-
shift_factor=0.1159,
|
164 |
-
),
|
165 |
-
),
|
166 |
-
"flux-dev-canny-lora": ModelSpec(
|
167 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
168 |
-
repo_flow="flux1-dev.safetensors",
|
169 |
-
repo_ae="ae.safetensors",
|
170 |
-
ckpt_path=os.getenv("FLUX_DEV"),
|
171 |
-
lora_path=os.getenv("FLUX_DEV_CANNY_LORA"),
|
172 |
-
params=FluxParams(
|
173 |
-
in_channels=128,
|
174 |
-
out_channels=64,
|
175 |
-
vec_in_dim=768,
|
176 |
-
context_in_dim=4096,
|
177 |
-
hidden_size=3072,
|
178 |
-
mlp_ratio=4.0,
|
179 |
-
num_heads=24,
|
180 |
-
depth=19,
|
181 |
-
depth_single_blocks=38,
|
182 |
-
axes_dim=[16, 56, 56],
|
183 |
-
theta=10_000,
|
184 |
-
qkv_bias=True,
|
185 |
-
guidance_embed=True,
|
186 |
-
),
|
187 |
-
ae_path=os.getenv("AE"),
|
188 |
-
ae_params=AutoEncoderParams(
|
189 |
-
resolution=256,
|
190 |
-
in_channels=3,
|
191 |
-
ch=128,
|
192 |
-
out_ch=3,
|
193 |
-
ch_mult=[1, 2, 4, 4],
|
194 |
-
num_res_blocks=2,
|
195 |
-
z_channels=16,
|
196 |
-
scale_factor=0.3611,
|
197 |
-
shift_factor=0.1159,
|
198 |
-
),
|
199 |
-
),
|
200 |
-
"flux-dev-depth": ModelSpec(
|
201 |
-
repo_id="black-forest-labs/FLUX.1-Depth-dev",
|
202 |
-
repo_flow="flux1-depth-dev.safetensors",
|
203 |
-
repo_ae="ae.safetensors",
|
204 |
-
ckpt_path=os.getenv("FLUX_DEV_DEPTH"),
|
205 |
-
lora_path=None,
|
206 |
-
params=FluxParams(
|
207 |
-
in_channels=128,
|
208 |
-
out_channels=64,
|
209 |
-
vec_in_dim=768,
|
210 |
-
context_in_dim=4096,
|
211 |
-
hidden_size=3072,
|
212 |
-
mlp_ratio=4.0,
|
213 |
-
num_heads=24,
|
214 |
-
depth=19,
|
215 |
-
depth_single_blocks=38,
|
216 |
-
axes_dim=[16, 56, 56],
|
217 |
-
theta=10_000,
|
218 |
-
qkv_bias=True,
|
219 |
-
guidance_embed=True,
|
220 |
-
),
|
221 |
-
ae_path=os.getenv("AE"),
|
222 |
-
ae_params=AutoEncoderParams(
|
223 |
-
resolution=256,
|
224 |
-
in_channels=3,
|
225 |
-
ch=128,
|
226 |
-
out_ch=3,
|
227 |
-
ch_mult=[1, 2, 4, 4],
|
228 |
-
num_res_blocks=2,
|
229 |
-
z_channels=16,
|
230 |
-
scale_factor=0.3611,
|
231 |
-
shift_factor=0.1159,
|
232 |
-
),
|
233 |
-
),
|
234 |
-
"flux-dev-depth-lora": ModelSpec(
|
235 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
236 |
-
repo_flow="flux1-dev.safetensors",
|
237 |
-
repo_ae="ae.safetensors",
|
238 |
-
ckpt_path=os.getenv("FLUX_DEV"),
|
239 |
-
lora_path=os.getenv("FLUX_DEV_DEPTH_LORA"),
|
240 |
-
params=FluxParams(
|
241 |
-
in_channels=128,
|
242 |
-
out_channels=64,
|
243 |
-
vec_in_dim=768,
|
244 |
-
context_in_dim=4096,
|
245 |
-
hidden_size=3072,
|
246 |
-
mlp_ratio=4.0,
|
247 |
-
num_heads=24,
|
248 |
-
depth=19,
|
249 |
-
depth_single_blocks=38,
|
250 |
-
axes_dim=[16, 56, 56],
|
251 |
-
theta=10_000,
|
252 |
-
qkv_bias=True,
|
253 |
-
guidance_embed=True,
|
254 |
-
),
|
255 |
-
ae_path=os.getenv("AE"),
|
256 |
-
ae_params=AutoEncoderParams(
|
257 |
-
resolution=256,
|
258 |
-
in_channels=3,
|
259 |
-
ch=128,
|
260 |
-
out_ch=3,
|
261 |
-
ch_mult=[1, 2, 4, 4],
|
262 |
-
num_res_blocks=2,
|
263 |
-
z_channels=16,
|
264 |
-
scale_factor=0.3611,
|
265 |
-
shift_factor=0.1159,
|
266 |
-
),
|
267 |
-
),
|
268 |
-
"flux-dev-fill": ModelSpec(
|
269 |
-
repo_id="black-forest-labs/FLUX.1-Fill-dev",
|
270 |
-
repo_flow="flux1-fill-dev.safetensors",
|
271 |
-
repo_ae="ae.safetensors",
|
272 |
-
ckpt_path=os.getenv("FLUX_DEV_FILL"),
|
273 |
-
lora_path=None,
|
274 |
-
params=FluxParams(
|
275 |
-
in_channels=384,
|
276 |
-
out_channels=64,
|
277 |
-
vec_in_dim=768,
|
278 |
-
context_in_dim=4096,
|
279 |
-
hidden_size=3072,
|
280 |
-
mlp_ratio=4.0,
|
281 |
-
num_heads=24,
|
282 |
-
depth=19,
|
283 |
-
depth_single_blocks=38,
|
284 |
-
axes_dim=[16, 56, 56],
|
285 |
-
theta=10_000,
|
286 |
-
qkv_bias=True,
|
287 |
-
guidance_embed=True,
|
288 |
-
),
|
289 |
-
ae_path=os.getenv("AE"),
|
290 |
-
ae_params=AutoEncoderParams(
|
291 |
-
resolution=256,
|
292 |
-
in_channels=3,
|
293 |
-
ch=128,
|
294 |
-
out_ch=3,
|
295 |
-
ch_mult=[1, 2, 4, 4],
|
296 |
-
num_res_blocks=2,
|
297 |
-
z_channels=16,
|
298 |
-
scale_factor=0.3611,
|
299 |
-
shift_factor=0.1159,
|
300 |
-
),
|
301 |
-
),
|
302 |
-
}
|
303 |
-
|
304 |
-
|
305 |
-
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
306 |
-
if len(missing) > 0 and len(unexpected) > 0:
|
307 |
-
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
308 |
-
print("\n" + "-" * 79 + "\n")
|
309 |
-
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
310 |
-
elif len(missing) > 0:
|
311 |
-
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
312 |
-
elif len(unexpected) > 0:
|
313 |
-
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
314 |
-
|
315 |
-
|
316 |
-
def load_flow_model(
|
317 |
-
name: str, device: str | torch.device = "cuda", hf_download: bool = True, verbose: bool = False
|
318 |
-
) -> Flux:
|
319 |
-
# Loading Flux
|
320 |
-
print("Init model")
|
321 |
-
ckpt_path = configs[name].ckpt_path
|
322 |
-
lora_path = configs[name].lora_path
|
323 |
-
if (
|
324 |
-
ckpt_path is None
|
325 |
-
and configs[name].repo_id is not None
|
326 |
-
and configs[name].repo_flow is not None
|
327 |
-
and hf_download
|
328 |
-
):
|
329 |
-
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
|
330 |
-
|
331 |
-
with torch.device("meta" if ckpt_path is not None else device):
|
332 |
-
if lora_path is not None:
|
333 |
-
model = FluxLoraWrapper(params=configs[name].params).to(torch.bfloat16)
|
334 |
-
else:
|
335 |
-
model = Flux(configs[name].params).to(torch.bfloat16)
|
336 |
-
|
337 |
-
if ckpt_path is not None:
|
338 |
-
print("Loading checkpoint")
|
339 |
-
# load_sft doesn't support torch.device
|
340 |
-
sd = load_sft(ckpt_path, device=str(device))
|
341 |
-
sd = optionally_expand_state_dict(model, sd)
|
342 |
-
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
|
343 |
-
if verbose:
|
344 |
-
print_load_warning(missing, unexpected)
|
345 |
-
|
346 |
-
if configs[name].lora_path is not None:
|
347 |
-
print("Loading LoRA")
|
348 |
-
lora_sd = load_sft(configs[name].lora_path, device=str(device))
|
349 |
-
# loading the lora params + overwriting scale values in the norms
|
350 |
-
missing, unexpected = model.load_state_dict(lora_sd, strict=False, assign=True)
|
351 |
-
if verbose:
|
352 |
-
print_load_warning(missing, unexpected)
|
353 |
-
return model
|
354 |
-
|
355 |
-
|
356 |
-
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
|
357 |
-
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
|
358 |
-
return HFEmbedder("google/t5-v1_1-xxl", max_length=max_length, torch_dtype=torch.bfloat16).to(device)
|
359 |
-
|
360 |
-
|
361 |
-
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
|
362 |
-
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
|
363 |
-
|
364 |
-
|
365 |
-
def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder:
|
366 |
-
ckpt_path = configs[name].ae_path
|
367 |
-
if (
|
368 |
-
ckpt_path is None
|
369 |
-
and configs[name].repo_id is not None
|
370 |
-
and configs[name].repo_ae is not None
|
371 |
-
and hf_download
|
372 |
-
):
|
373 |
-
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae)
|
374 |
-
|
375 |
-
# Loading the autoencoder
|
376 |
-
print("Init AE")
|
377 |
-
with torch.device("meta" if ckpt_path is not None else device):
|
378 |
-
ae = AutoEncoder(configs[name].ae_params)
|
379 |
-
|
380 |
-
if ckpt_path is not None:
|
381 |
-
sd = load_sft(ckpt_path, device=str(device))
|
382 |
-
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
|
383 |
-
print_load_warning(missing, unexpected)
|
384 |
-
return ae
|
385 |
-
|
386 |
-
|
387 |
-
def optionally_expand_state_dict(model: torch.nn.Module, state_dict: dict) -> dict:
|
388 |
-
"""
|
389 |
-
Optionally expand the state dict to match the model's parameters shapes.
|
390 |
-
"""
|
391 |
-
for name, param in model.named_parameters():
|
392 |
-
if name in state_dict:
|
393 |
-
if state_dict[name].shape != param.shape:
|
394 |
-
print(
|
395 |
-
f"Expanding '{name}' with shape {state_dict[name].shape} to model parameter with shape {param.shape}."
|
396 |
-
)
|
397 |
-
# expand with zeros:
|
398 |
-
expanded_state_dict_weight = torch.zeros_like(param, device=state_dict[name].device)
|
399 |
-
slices = tuple(slice(0, dim) for dim in state_dict[name].shape)
|
400 |
-
expanded_state_dict_weight[slices] = state_dict[name]
|
401 |
-
state_dict[name] = expanded_state_dict_weight
|
402 |
-
|
403 |
-
return state_dict
|
404 |
-
|
405 |
-
|
406 |
-
class WatermarkEmbedder:
|
407 |
-
def __init__(self, watermark):
|
408 |
-
self.watermark = watermark
|
409 |
-
self.num_bits = len(WATERMARK_BITS)
|
410 |
-
self.encoder = WatermarkEncoder()
|
411 |
-
self.encoder.set_watermark("bits", self.watermark)
|
412 |
-
|
413 |
-
def __call__(self, image: torch.Tensor) -> torch.Tensor:
|
414 |
-
"""
|
415 |
-
Adds a predefined watermark to the input image
|
416 |
-
|
417 |
-
Args:
|
418 |
-
image: ([N,] B, RGB, H, W) in range [-1, 1]
|
419 |
-
|
420 |
-
Returns:
|
421 |
-
same as input but watermarked
|
422 |
-
"""
|
423 |
-
image = 0.5 * image + 0.5
|
424 |
-
squeeze = len(image.shape) == 4
|
425 |
-
if squeeze:
|
426 |
-
image = image[None, ...]
|
427 |
-
n = image.shape[0]
|
428 |
-
image_np = rearrange((255 * image).detach().cpu(), "n b c h w -> (n b) h w c").numpy()[:, :, :, ::-1]
|
429 |
-
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
|
430 |
-
# watermarking libary expects input as cv2 BGR format
|
431 |
-
for k in range(image_np.shape[0]):
|
432 |
-
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
|
433 |
-
image = torch.from_numpy(rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)).to(
|
434 |
-
image.device
|
435 |
-
)
|
436 |
-
image = torch.clamp(image / 255, min=0.0, max=1.0)
|
437 |
-
if squeeze:
|
438 |
-
image = image[0]
|
439 |
-
image = 2 * image - 1
|
440 |
-
return image
|
441 |
-
|
442 |
-
|
443 |
-
# A fixed 48-bit message that was chosen at random
|
444 |
-
WATERMARK_MESSAGE = 0b001010101111111010000111100111001111010100101110
|
445 |
-
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
|
446 |
-
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
|
447 |
-
embed_watermark = WatermarkEmbedder(WATERMARK_BITS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|