File size: 9,799 Bytes
030bc4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# import os
# from typing import List
# from dotenv import load_dotenv
# import chainlit as cl
# from langchain_community.embeddings import HuggingFaceEmbeddings
# from langchain_text_splitters import RecursiveCharacterTextSplitter
# from langchain_community.vectorstores import FAISS
# from langchain_community.document_loaders import PyPDFLoader
# from langchain.chains import RetrievalQA
# from langchain_groq import ChatGroq
# from langchain_huggingface import HuggingFaceEmbeddings
# # Load environment variables
# load_dotenv()
# # Initialize embedding model
# # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# openai.api_key = os.getenv("OPENAI_API_KEY")
# # Initialize embedding model using OpenAI
# embeddings = OpenAIEmbeddings(openai_api_key=openai.api_key,model="text-embedding-3-small")
# # Initialize vector store
# vector_store = None
# # Store PDF file paths
# pdf_files = {}
# # Define the path for the FAISS index
# FAISS_INDEX_PATH = "faiss_index"
# def process_pdfs(directory: str) -> None:
# """Process all PDFs in the given directory and add them to the vector store."""
# global vector_store, pdf_files
# documents = []
# for filename in os.listdir(directory):
# if filename.endswith(".pdf"):
# file_path = os.path.join(directory, filename)
# loader = PyPDFLoader(file_path)
# documents.extend(loader.load())
# pdf_files[filename] = file_path
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
# texts = text_splitter.split_documents(documents)
# if os.path.exists(FAISS_INDEX_PATH):
# vector_store = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
# vector_store.add_documents(texts)
# else:
# vector_store = FAISS.from_documents(texts, embeddings)
# # Save the updated vector store
# vector_store.save_local(FAISS_INDEX_PATH)
# @cl.on_chat_start
# async def start():
# """Initialize the chat session."""
# await cl.Message(content="Welcome! Processing PDFs...").send()
# # Process PDFs (replace with your PDF directory)
# process_pdfs(r"C:\Users\sumes\OneDrive\Documents\pdf_docs")
# await cl.Message(content="PDFs processed. You can now ask questions!").send()
# @cl.on_message
# async def main(message: cl.Message):
# """Handle user messages and generate responses."""
# if vector_store is None:
# await cl.Message(content="Error: Vector store not initialized.").send()
# return
# query = message.content
# retriever = vector_store.as_retriever(search_kwargs={"k": 1})
# llm = OpenAI(openai_api_key=openai.api_key, model="gpt-4o-mini", temperature=0.4)
# qa_chain = RetrievalQA.from_chain_type(
# llm=llm,
# chain_type="stuff",
# retriever=retriever,
# return_source_documents=True
# )
# result = qa_chain(query)
# answer = result['result']
# source_docs = result['source_documents']
# await cl.Message(content=answer).send()
# if source_docs:
# sources_message = "Sources:\n"
# for doc in source_docs:
# file_name = os.path.basename(doc.metadata['source'])
# if file_name in pdf_files:
# file_path = pdf_files[file_name]
# elements = [
# cl.Text(name=file_name, content=f"Source: {file_name}"),
# cl.File(name=file_name, path=file_path, display="inline")
# ]
# await cl.Message(content=f"Source: {file_name}", elements=elements).send()
# else:
# sources_message += f"- {doc.metadata['source']}\n"
# if sources_message != "Sources:\n":
# await cl.Message(content=sources_message).send()
# if __name__ == "__main__":
# cl.run()
import os
from typing import List
from dotenv import load_dotenv
import chainlit as cl
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
# Load environment variables
load_dotenv()
# Initialize OpenAI API key
openai_api_key = os.getenv("OPENAI_API_KEY")
# Initialize embedding model using OpenAI
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key,model="text-embedding-3-small")
# Initialize vector store
vector_store = None
# Store PDF file paths
pdf_files = {}
# Define the path for the FAISS index
FAISS_INDEX_PATH = "faiss_index"
FAISS_INDEX_FILE = os.path.join(FAISS_INDEX_PATH, "index.faiss")
def process_pdfs(directory: str) -> None:
"""Process all PDFs in the given directory and add them to the vector store."""
global vector_store, pdf_files
documents = []
for filename in os.listdir(directory):
if filename.endswith(".pdf"):
file_path = os.path.join(directory, filename)
loader = PyPDFLoader(file_path)
documents.extend(loader.load())
pdf_files[filename] = file_path
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
if os.path.exists(FAISS_INDEX_FILE):
try:
vector_store = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
vector_store.add_documents(texts)
except Exception as e:
print(f"Error loading FAISS index: {e}")
vector_store = FAISS.from_documents(texts, embeddings)
else:
vector_store = FAISS.from_documents(texts, embeddings)
# Save the updated vector store
if not os.path.exists(FAISS_INDEX_PATH):
os.makedirs(FAISS_INDEX_PATH)
vector_store.save_local(FAISS_INDEX_PATH)
@cl.on_chat_start
async def start():
"""Initialize the chat session."""
await cl.Message(content="Welcome! Processing PDFs...").send()
# Process PDFs (replace with your PDF directory)
process_pdfs(r"C:\Users\sumes\OneDrive\Documents\pdf_docs")
await cl.Message(content="PDFs processed. You can now ask questions!").send()
# @cl.on_message
# async def main(message: cl.Message):
# """Handle user messages and generate responses."""
# if vector_store is None:
# await cl.Message(content="Error: Vector store not initialized.").send()
# return
# query = message.content
# retriever = vector_store.as_retriever(search_kwargs={"k": 3})
# # Initialize the OpenAI language model
# llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-4o-mini", temperature=0)
# qa_chain = RetrievalQA.from_chain_type(
# llm=llm,
# chain_type="stuff",
# retriever=retriever,
# return_source_documents=True
# )
# result = qa_chain(query)
# answer = result['result']
# source_docs = result['source_documents']
# await cl.Message(content=answer).send()
# if source_docs:
# sources_message = "Sources:\n"
# for doc in source_docs:
# file_name = os.path.basename(doc.metadata['source'])
# if file_name in pdf_files:
# file_path = pdf_files[file_name]
# elements = [
# cl.Text(name=file_name, content=f"Source: {file_name}"),
# cl.File(name=file_name, path=file_path, display="inline")
# ]
# await cl.Message(content=f"Source: {file_name}", elements=elements).send()
# else:
# sources_message += f"- {doc.metadata['source']}\n"
# if sources_message != "Sources:\n":
# await cl.Message(content=sources_message).send()
@cl.on_message
async def main(message: cl.Message):
"""Handle user messages and generate responses."""
if vector_store is None:
await cl.Message(content="Error: Vector store not initialized.").send()
return
query = message.content
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
# Initialize the OpenAI language model
llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-4o-mini", temperature=0)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
result = qa_chain(query)
answer = result['result']
source_docs = result['source_documents']
await cl.Message(content=answer).send()
if source_docs:
unique_sources = set()
for doc in source_docs:
file_name = os.path.basename(doc.metadata['source'])
if file_name in pdf_files and file_name not in unique_sources:
unique_sources.add(file_name)
file_path = pdf_files[file_name]
elements = [
cl.Text(name=file_name, content=f"Source: {file_name}"),
cl.File(name=file_name, path=file_path, display="inline")
]
await cl.Message(content=f"Source: {file_name}", elements=elements).send()
other_sources = [doc.metadata['source'] for doc in source_docs if os.path.basename(doc.metadata['source']) not in pdf_files]
unique_other_sources = set(other_sources)
if unique_other_sources:
sources_message = "Other Sources:\n" + "\n".join(f"- {source}" for source in unique_other_sources)
await cl.Message(content=sources_message).send()
if __name__ == "__main__":
cl.run() |